Skip to main content
Log in

Biosynthesis of Ag-ZnO/rGO nanocomposites mediated Ceratophyllum demersum L. leaf extract for photocatalytic degradation of Rhodamine B under visible light

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

After using Ceratophyllum demersum L. leaf extract in their fabrication, the Ag-ZnO/rGO nanocomposites’ photocatalytic activity against Rhodamine B (RhB) dye degradation was examined. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (DRS), Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET), and Photoluminescence (PL) spectroscopy were used to determine the composition, structural phase, optical properties, morphology, and surface texture of the obtained nanomaterials. The findings of the characterization demonstrated that the as-synthesized nanomaterials were effectively produced. The TEM images that Ag and ZnO were distributed efficiently on the rGO nanosheets. According to the photocatalytic degradation data, Ag-ZnO/rGO (10%) had the most significant elimination percentage of RhB dye under optimal circumstances ([RhB] = 5 ppm, pH 9, catalyst dose = 1.2 g/L, and irradiation time = 90 min). The photocatalytic behavior of the highly effective Ag-ZnO/rGO (5%) nanocomposite was increased, with a maximum photocatalytic degradation efficiency of ∼96.3%. RhB dye photocatalytic degradation was investigated using many ROS scavengers. After five cycles, the Ag-ZnO/rGO (5%) nanocomposite was very stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Khan NA, Ahmed S, Farooqi IH, Ali I, Vambol V, Changani F, Yousefi M, Vambol S, Khan S, Khan AH (2020) Occurrence, sources and conventional treatment techniques for various antibiotics present in hospital wastewaters: a critical review. TrAC Trends Anal Chem 129:115921

    Article  Google Scholar 

  2. Saravanan A, Kumar PS, Jeevanantham S, Karishma S, Tajsabreen B, Yaashikaa PR, Reshma B (2021) Effective water/wastewater treatment methodologies for toxic pollutants removal: processes and applications towards sustainable development. Chemosphere 280:130595

    Article  Google Scholar 

  3. Ghernaout D, Elboughdiri N (2020) Advanced oxidation processes for wastewater treatment: facts and future trends. Open Access Lib J 7(2):1–15

    Google Scholar 

  4. Matavos-Aramyan S, Moussavi M (2017) Advances in fenton and fenton based oxidation processes for industrial effluent contaminants control-a review. Int J Environ Sci Nat Res 2(4):555594

    Google Scholar 

  5. Skvortsova LN, Bolgaru KA, Sherstoboeva MV, Dychko KA (2020) Degradation of diclofenac in aqueous solutions under conditions of combined homogeneous and heterogeneous photocatalysis. Russ J Phys Chem A 94(6):1248–1253

    Article  Google Scholar 

  6. Igwegbe CA, Ahmadi S, Rahdar S, Ramazani A, Mollazehi AR (2020) Efficiency comparison of advanced oxidation processes for ciprofloxacin removal from aqueous solutions: sonochemical, sono-nano-chemical and sono-nano-chemical/persulfate processes. Environ Eng Res 25(2):178–185

    Article  Google Scholar 

  7. Radjenovic J, Duinslaeger N, Avval SS, Chaplin BP (2020) Facing the challenge of poly-and perfluoroalkyl substances in water: is electrochemical oxidation the answer? Environ Sci Technol Lett 54(23):14815–14829

    Article  Google Scholar 

  8. Shi S-H, Liang Y, Jiao N (2020) Electrochemical oxidation induced selective C-C bond cleavage. Chem Rev 121(1):485–505

    Article  Google Scholar 

  9. Ajel MK, Al-Nayili A (2022) Synthesis, characterization of Ag-WO3/bentonite nanocomposites and their application in photocatalytic degradation of humic acid in water. Environ Sci Pollu Res 30:20775–20789

    Article  Google Scholar 

  10. Dayekh NS, Al-Nayili A (2022) Heterogeneous photocatalytic degradation of phenol over Pd/rGO sheets. AIP Conf Proc 2389(1):030010

    Article  Google Scholar 

  11. Al-nayili A, Noor J, Muhammad NJ (2023) Perovskite’s LaNiMnO6/montmorillonite K10 nanocomposites: synthesis and enhanced photocatalytic activity. Mater Sci in Semicond Process 155:107254

    Article  Google Scholar 

  12. Al-Abidy M, Abbas Al-Nayili A (2022) Enhancement of photocatalytic activities of ZnFe2O4 composite by incorporating halloysite nanotubes for effective elimination of aqueous organic pollutants. Environ Monit Assess 195(1):190

    Article  Google Scholar 

  13. Ma Z, Ren F, Ming X, Long Y, Volinsky AA (2019) Cu-Doped ZnO electronic structure and optical properties studied by first-principles calculations and experiments. Materials (Basel) 12(1):196

    Article  Google Scholar 

  14. Halbus AF, Horozov TS, Paunov VN (2020) Surface-modified zinc oxide nanoparticles for antialgal and antiyeast applications. ACS Appl Nano Mater 3(1):440–451

    Article  Google Scholar 

  15. Czyowska A, Barbasz A (2022) A review: zinc oxide nanoparticles friends or enemies? Int J Environ Health Res 32(4):885–901

    Article  Google Scholar 

  16. Dodoo-Arhin D, Asiedu T, Agyei-Tuffour B, Nyankson E, Obada D, Mwabora JM (2021) Photocatalytic degradation of Rhodamine dyes using zinc oxide nanoparticles. Mater Today: Proc 38:809–815

    Google Scholar 

  17. Ortega PP, Silva CC, Ramirez MA, Biasotto G, Foschini CR, Simoes AZ (2021) Multifunctional environmental applications of ZnO nanostructures synthesized by the microwave-assisted hydrothermal technique. Appl Sur Sci 542:148723

    Article  Google Scholar 

  18. Danish MSS, Estrella LL, Alemaida IMA, Lisin A, Moiseev N, Ahmadi M, Nazari M, Wali M, Zaheb H, Senjyu T (2021) Photocatalytic applications of metal oxides for sustainable environmental remediation. Metals 11(1):80

    Article  Google Scholar 

  19. Yang B, Zheng J, Li W, Wang R, Li D, Guo X, Rodriguez RD, Jia X (2020) Engineering Z-scheme TiO2-OV-BiOCl via oxygen vacancy for enhanced photocatalytic degradation of imidacloprid. Dalton Trans 49(31):11010–11018

    Article  Google Scholar 

  20. Kumar S, Kaushik RD, Upadhyay GK, Purohit LP (2021) rGO-ZnO nanocomposites as efficient photocatalyst for degradation of 4-BP and DEP using high temperature refluxing method in in-situ condition. J Hazard Mater 406:124300

    Article  Google Scholar 

  21. Ghosh G, Basu S (1966) Saha S (2018) Photocatalytic degradation of textile dye using TiO2-activated carbon nanocomposite. AIP Conf Proc 1:020027

    Google Scholar 

  22. Arsalani N, Bazazi S, Abuali M, Jodeyri S (2020) A new method for preparing ZnO/CNT nanocomposites with enhanced photocatalytic degradation of malachite green under visible light. J Photochem Photobiol A 389:112207

    Article  Google Scholar 

  23. Meng Z-D, Zhu L, Choi J-G, Park C-Y, Oh W-C (2011) Preparation, characterization and photocatalytic behavior of WO3-fullerene/TiO2 catalysts under visible light. Nanoscale Res Lett 6(1):459

    Article  Google Scholar 

  24. Singhal N, S, Yuvaraj Sivalingam, Venugopal G, (2022) Study of photocatalytic degradation efficiency of rGO/ZnO nano-photocatalyst and their performance analysis using scanning Kelvin probe. J Environ Chem Eng 10(2):107293

    Article  Google Scholar 

  25. Dang TK, Son NT, Lanh NT, Phuoc PH, Viet NN, Thong LV, Hung CM, Duy NV, Hoa ND, Hieu NV (2021) Extraordinary H2S gas sensing performance of ZnO/rGO external and internal heterojunctions. J Alloys Compd 879:160457

    Article  Google Scholar 

  26. Alharthi FA, Alsyahi AA, Alshammari SG, Al-Abdulkarim HA, AlFawaz A, Alsalme A (2022) Synthesis and characterization of rGO@ZnO nanocomposites for esterification of acetic acid. ACS Omega 7(3):2786–2797

    Article  Google Scholar 

  27. Buldu-Akturk M, Toufani M, Tufani A (2022) Erdem E (2002) ZnO and reduced graphene oxide electrodes for all-in-one supercapacitor devices. Nanoscale 14:3269–3278

    Article  Google Scholar 

  28. Georgekutty R, Seery MK, Pillai SC (2008) A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism. J Phys Chem C112(35):13563–13570

    Google Scholar 

  29. Zhu X, Wang J, Yang D, Liu J, He L, Tang M, Feng W, Wu X (2021) Fabrication, characterization and high photocatalytic activity of Ag-ZnO heterojunctions under UV-visible light. RSC Adv 11(44):27257–27266

    Article  Google Scholar 

  30. Khiari M, Gillio M, Lejeune M, Lazar F, Hadjadj A (2021) Effects of Ag nanoparticles on zinc oxide photocatalytic performance. Coatings 11:400

    Article  Google Scholar 

  31. Height M, Pratsinis S, Mekasuwandumrong O, Praserthdam P (2006) Ag-ZnO catalysts for UV-photodegradation of methylene blue. Appl Catal B: Environ 63:305–312

    Article  Google Scholar 

  32. Khademalrasool M, Farbod M, Talebzadeh MD (2021) Investigation of shape effect of silver nanostructures and governing physical mechanisms on photo-activity: Zinc oxide/silver plasmonic photocatalyst. Adv Powder Technol 32(6):1844–1857

    Article  Google Scholar 

  33. Tayel A, Ramadan AR, El Seoud OA (2018) Titanium dioxide/graphene and titanium dioxide/graphene oxide nanocomposites: synthesis, characterization and photocatalytic applications for water decontamination. Catal 8(11):491

    Google Scholar 

  34. Albo Hay Allah MA, Alshamsi HA (2022) Green synthesis of ZnO NPs using Pontederia crassipes leaf extract: characterization, their adsorption behavior and anti-cancer property. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-03091-y

  35. Ghosh TK, Gope S, Roy I, Sarkar G, Sadhukhan S, Bhattarya A, Pramanik K, Chattopadhyay SANATAN, S, Chakraborty M, Chattopadhyay D, (2016) Physical and electrical characterization of reduced graphene oxide synthesized adopting green route. Bull Mater Sci 39:543–550

    Article  Google Scholar 

  36. Nallal VUM, Prabha K, VethaPotheher I, Ravindran B, Baazeem A, Chang SW, Otunola GA, Razia M (2021) Sunlight-driven rapid and facile synthesis of Silver nanoparticles using Allium ampeloprasum extract with enhanced antioxidant and antifungal activity. Saudi J Biol Sci 28(7):3660–3668

    Article  Google Scholar 

  37. Radičić R, Maletić D, Blažeka D, Car J, Krstulović N (2022) Synthesis of silver, gold, and platinum doped zinc oxide nanoparticles by pulsed laser ablation in water. Nanomater 12:3484

    Article  Google Scholar 

  38. Mei X, Ouyang J (2011) Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon 49(15):5389–9750

    Article  Google Scholar 

  39. Feng Y, Feng N, Wei Y, Zhang G (2014) An in-situ gelatin-assisted hydrothermal synthesis of ZnO–reduced graphene oxide composites with enhanced photocatalytic performance under ultraviolet and visible light. RSC Adv 4(16):7933–7943

    Article  Google Scholar 

  40. Al-Nayili A (2021) M, AuPd bimetallic nanoparticles supported on reduced graphene oxide nanosheets as catalysts for hydrogen generation from formic acid under ambient temperature. New J Chem 45:10040–10048

    Article  Google Scholar 

  41. Fan H, Zhao X, Yang J, Shan X, Yang Y, Zhang Y, Li X, Gao M (2012) ZnO–graphene composite for photocatalytic degradation of methylene blue dye. Catal Commun 29:29–34

    Article  Google Scholar 

  42. Xiong H-M, Shchukin DG, Möhwald H, Xu Y, Xia Y-Y (2009) Sonochemical synthesis of highly luminescent zinc oxide nanoparticles doped with magnesium (II). Angew Chem Int Ed 48(15):2727–2731

    Article  Google Scholar 

  43. Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water- soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130(18):5856–5857

    Article  Google Scholar 

  44. Surendran DK, Xavier MM, Viswanathan VP, Mathew S (2017) Synthesis of a ternary Ag/RGO/ZnO nanocomposite via microwave irradiation and its application for the degradation of Rhodamine B under visible light. Environ Sci Pollut Res Int 24(18):15360–15368

    Article  Google Scholar 

  45. Beura R, Pachaiappan R, Paramasivam T (2021) Photocatalytic degradation studies of organic dyes over novel Ag-loaded ZnO-graphene hybrid nanocomposites. J Phys Chem Solids 148:109689

    Article  Google Scholar 

  46. Isai KA, Shrivastava VS (2019) Photocatalytic degradation of methylene blue using ZnO and 2%Fe–ZnO semiconductor nanomaterials synthesized by sol–gel method: a comparative study. SN Appl Sci 1:1247

    Article  Google Scholar 

  47. Alwan SH, Salem KH, Alshamsi HA (2022) (Visible light-driven photocatalytic degradation of Rhodamine B dye onto TiO2/rGO nanocomposites. Mater Today Commun 33:104558

    Article  Google Scholar 

  48. Loka C, Lee KS (2022) Enhanced Visible-Light-Driven Photocatalysis of Ag/Ag2O/ZnO Nanocomposite Heterostructures. Nanomaterials (Basel) 12(15):2528

    Article  Google Scholar 

  49. Xu P, Wang P, Wang Q, Wei R, Li Y, Xin Y, Zheng T, Hu L, Wang X, Zhang G (2021) Facile synthesis of Ag2O/ZnO/rGO heterojunction with enhanced photocatalytic activity under simulated solar light: Kinetics and mechanism. J Hazard Mater 403:124011

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Methodology, investigation, software, formal analysis, writing—original draft, visualization, and formal analysis (Aseel A. kadhem). Writing—review and editing, supervision, project administration, and resources (Hassan A. Alshamsi).

Corresponding author

Correspondence to Hassan A. Alshamsi.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

kadhem, A.A., Alshamsi, H.A. Biosynthesis of Ag-ZnO/rGO nanocomposites mediated Ceratophyllum demersum L. leaf extract for photocatalytic degradation of Rhodamine B under visible light. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04501-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04501-5

Keywords

Navigation