Skip to main content
Log in

Resistive switching properties of hafnium oxide thin-films sputtered at different oxygen partial pressures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report a study on the effects of O2/Ar ratio on the resistive switching properties of HfOx thin-films deposited by using RF magnetron sputtering. Ar is kept at a constant flow rate of 30 SCCM and O2 is varied from 0 to 30 SCCM during the deposition of these thin films. The UV–Vis spectra reveled that the transmission percentage of these films increase proportionally with increase of O2/Ar ratio up to a critical value. Further, the peak positions at 2.7 and 2.9 eV in PL spectra were attributed to singly and doubly charged oxygen vacancies respectively. These defects and vacancies alter the switching behavior of the devices. Moreover, the XPS data showed that the intensity of O–O bond peak decreases as O2/Ar ratio increases. Therefore, the switching performance shows a significant influence of the amount of inletting the oxygen gas with Ar during the deposition, thereby an improvement in the resistance ratio (Roff/Ron) of these HfOx based devices is noticed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data is available with authors and can be provided whenever required.

References

  1. A. Chen, Solid-state electronics—a review of emerging non-volatile memory (NVM) technologies and applications. Solid State Electron. 125, 25–38 (2016). https://doi.org/10.1016/j.sse.2016.07.006

    Article  ADS  CAS  Google Scholar 

  2. H. Yildirim, R. Pachter, Mechanistic analysis of oxygen vacancy-driven conductive filament formation in resistive random-access memory metal/NiO/metal structures. ACS Appl. Mater. Interfaces 10, 9802–9816 (2018). https://doi.org/10.1021/acsami.7b17645

    Article  CAS  PubMed  Google Scholar 

  3. W. Banerjee, Challenges and applications of emerging nonvolatile memory devices. Electronics 9(1029), 1–24 (2020). https://doi.org/10.3390/electronics9061029

    Article  CAS  Google Scholar 

  4. L. Gao, Q. Ren, J. Sun, S.-T. Han, Y. Zhou, Memristor modeling: challenges in theories, simulations, and device variability. J. Mater. Chem. C 9, 16859–16884 (2021). https://doi.org/10.1039/d1tc04201g

    Article  CAS  Google Scholar 

  5. M. Lanza, A review on resistive switching in high-k dielectrics: a nanoscale point of view using conductive atomic force microscope. Materials (Basel) 7(3), 2155–2182 (2014). https://doi.org/10.3390/ma7032155

    Article  ADS  CAS  PubMed  Google Scholar 

  6. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008). https://doi.org/10.1038/nature06932

    Article  ADS  CAS  PubMed  Google Scholar 

  7. M. Pešić, U. Schroeder, S. Slesazeck, T. Mikolajick, T. Mikolajick, Reliability aspects of novel anti-ferroelectric non-volatile memories compared to hafnia based ferroelectric memories. IEEE Int. Integr. Reliab. Workshop (IIRW) (2017). https://doi.org/10.1109/IIRW.2017.8361237

    Article  Google Scholar 

  8. T.S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger, Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011). https://doi.org/10.1063/1.3634052

    Article  ADS  CAS  Google Scholar 

  9. K. Kim, Y.J. Song, Integration technology for ferroelectric memory devices. Microelectron. Reliab. 43(3), 385–398 (2003). https://doi.org/10.1016/S0026-2714(02)00285-8

    Article  CAS  Google Scholar 

  10. W. Banerjee, A. Kashir, S. Kamba, Hafnium oxide (HfO2)—a multifunctional oxide: a review on the prospect and challenges of hafnium oxide in resistive switching and ferroelectric memories. Small 18(23), 2107575 (2022). https://doi.org/10.1002/smll.202107575

    Article  CAS  Google Scholar 

  11. G. Mola, E. Nowak, Advances in emerging memory technologies: from data storage to artificial intelligence. Appl. Sci. 11, 11254 (2021)

    Article  Google Scholar 

  12. F. Palumbo, Formation and characterization of filamentary current paths in HfO2-based resistive switching structures. IEEE Electron. Device Lett. 33(7), 1057–1059 (2012). https://doi.org/10.1109/LED.2012.2194689

    Article  ADS  CAS  Google Scholar 

  13. D. Ielmini, Resistive switching memories based on metal oxides: mechanisms, reliability and scaling. Semicond. Sci. Technol. 31(6), 1–25 (2016). https://doi.org/10.1088/0268-1242/31/6/063002

    Article  CAS  Google Scholar 

  14. A. Sawa, Resistive switching in rapid advances in information technology rely on high-speed and large-capacity nonvolatile memories. Mater. Today 11(6), 28–36 (2008). https://doi.org/10.1016/S1369-7021(08)70119

    Article  CAS  Google Scholar 

  15. Q. Wang, G. Niu, S. Roy, Y. Wang, Y. Zhang, H. Wu, S. Zhai, W. Bai, P. Shi, S. Song, Z. Song, Interface-engineered reliable HfO2-based RRAM for synaptic simulation. J. Mater. Chem. C 7, 12682–12687 (2019). https://doi.org/10.1039/c9tc04880d

    Article  CAS  Google Scholar 

  16. X. Lian, E. Miranda, S. Long, L. Perniola, M. Liu, J. Sune, Three state resistive switching in HfO2-based RRAM. Solid State Electron. 98, 38–44 (2014). https://doi.org/10.1016/j.sse.2014.04.016

    Article  ADS  CAS  Google Scholar 

  17. N. Arun, K.V. Kumar, A.P. Pathak, D.K. Avasthi, S.V.S. Nageswara Rao, Hafnia-based resistive switching devices for nonvolatile memory applications and effects of gamma irradiation on device performance. Rad. Eff. Def. Sol. 173(3–4), 239–249 (2018). https://doi.org/10.1080/10420150.2018.1425863

    Article  CAS  Google Scholar 

  18. N. Arun, L.D. Varma Sangani, K. Vinod Kumar, A. Mangababu, M. Ghanashyam Krishna, A.P. Pathak, S.V.S. Nageswara Rao, Effects of swift heavy ion irradiation on the performance of HfO2-based resistive random access memory devices. J. Mater. Sci.: Mater. Electron. 32, 2973–2986 (2021). https://doi.org/10.1007/s10854-020-05049-0

    Article  CAS  Google Scholar 

  19. Y. Xiangxiang Ding, P. Feng, L. Huang, J.K. Liu, Low-power resistive switching characteristic in HfO2/TiOx Bi-layer resistive random-access memory. Nanoscale Res. Lett. (2019). https://doi.org/10.1186/s11671-019-2956-4

    Article  PubMed  PubMed Central  Google Scholar 

  20. C. Muhammad Ismail, O. Mahata, S. Kim, Neuromorphic synapses with high switching uniformity and multilevel memory storage enabled through a Hf–Al–O alloy for artificial intelligence. ACS Appl. Electron. Mater. 4, 1288–1300 (2022). https://doi.org/10.1021/acsaelm.2c00023

    Article  CAS  Google Scholar 

  21. C.-Y. Huang, W.C. Shen, Y.-H. Tseng, Y.-C. King, C.-J. Lin, IEEE Electron. Device Lett. 33, 1108–1110 (2012)

    Article  ADS  CAS  Google Scholar 

  22. A. Chen, 2015 IEEE international electron devices meeting (IEDM), 2015

  23. M.S. Rathore, A. Vinod, R. Angalakurthi, A.P. Pathak, S.K. Thatikond, S.R. Nelamarri, Role of oxygen pressure on the structural and photoluminescence properties of pulsed laser deposited GeO2 thin films. Phys. B: Phys. Condens. Matter. 625, 413466 (2022). https://doi.org/10.1016/j.physb.2021.413466

    Article  CAS  Google Scholar 

  24. B. Biplab Sarkar, V. Misra, Understanding the gradual reset in Pt/Al2O3/Ni RRAM for synaptic applications. Semicond. Sci. Technol. 30(10), 105014 (2015). https://doi.org/10.1088/0268-1242/30/10/105014

    Article  ADS  CAS  Google Scholar 

  25. K. Park, J.-S. Lee, Reliable resistive switching memory based on oxygen-vacancy-controlled bilayer structures. RSC Adv. 6, 21736–21741 (2016). https://doi.org/10.1039/C6RA00798H

    Article  ADS  CAS  Google Scholar 

  26. H.Y. Jeong, Y.I. Kim, J.Y. Lee, S.-Y. Choi, A low-temperature-grown TiO2-based device for the flexible stacked RRAM application. Nanotechnology 21, 115203 (2010). https://doi.org/10.1088/0957-4484/21/11/115203

    Article  ADS  CAS  PubMed  Google Scholar 

  27. M.A. Na Xiao, B. Villena, S. Yuan, B. Chen, M. Wang, Y. Eliáš, F. Shi, X. Hui, A. Jing, K. Scheuermann, P.C. Tang, M. McIntyre, Resistive random access memory cells with a bilayer TiO2/SiOx insulating stack for simultaneous filamentary and distributed resistive switching. Adv. Funct. Mater. 27, 1700384 (2017). https://doi.org/10.1002/adfm.201700384

    Article  CAS  Google Scholar 

  28. M.M. Rehman, H.M.M.U. Rehman, J.Z. Gul, W.Y. Kim, K.S. Karimov, N. Ahmed, Decade of 2D-materials-based RRAM devices: a review. Sci. Technol. Adv. Mater. 21(1), 147–186 (2020). https://doi.org/10.1080/14686996.2020.1730236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. J.M. Khoshman, A. Khan, M.E. Kordesch, Amorphous hafnium oxide thin films for antireflection optical coatings. Surf. Coat. Technol. 202, 2500–2502 (2008). https://doi.org/10.1016/j.surfcoat.2007.07.095

    Article  CAS  Google Scholar 

  30. J. Allan, J.A. Waldorf, T. Dobrowolski, B. Sullivan, L.M. Plante, Optical coatings deposited by reactive ion plating. Appl. Opt. 32, 5583–5593 (1993). https://doi.org/10.1364/AO.32.005583

    Article  ADS  Google Scholar 

  31. S.U. Sharath, T. Bertaud, J. Kurian, E. Hildebrandt, C. Walczyk, P. Calka, P. Zaumseil, M. Sowinska, D. Walczyk, A. Gloskovskii, T. Schroeder, L. Alff, Towards forming-free resistive switching in oxygen engineered HfO2–x. Appl. Phys. Lett. 104, 063502 (2014). https://doi.org/10.1063/1.4864653

    Article  ADS  CAS  Google Scholar 

  32. S.U. Sharath, S. Vogel, L. Molina-Luna, E. Hildebrandt, C. Wenger, J. Kurian, M. Duerrschnabel, T. Niermann, G. Niu, P. Calka, M. Lehmann, H.-J. Kleebe, T. Schroeder, L. Alff, Control of switching modes and conductance quantization in oxygen engineered HfOx based memristive devices. Adv. Funct. Mater. 27, 1700432 (2017). https://doi.org/10.1002/adfm.201700432

    Article  CAS  Google Scholar 

  33. A. Nimmala, A.P. Pathak, M. Ghanashyam Krishna, M. Motapothula V.S.N.R. Sunkaranam, Radiation response of HfOx-based resistive random access memory (RRAM) devices. ACS Appl. Electron. Mater. 4(11), 5594–5601 (2022). https://doi.org/10.1021/acsaelm.2c01180

    Article  CAS  Google Scholar 

  34. T. Torchynska, L.G. Vega Macotela, L. Khomenkova, F. Gourbilleau, L. Lartundo Rojas, Annealing impact on emission and phase varying of Nd-doped Si-rich-HfO2 films prepared by RF magnetron sputtering. J. Mater. Sci.: Mater. Electron. 31, 4587–4594 (2020). https://doi.org/10.1007/s10854-020-03010-9

    Article  CAS  Google Scholar 

  35. O.J.Y. Federica Frati, M. Hunault, M.F. Frank, Oxygen K-edge X-ray absorption spectra. Chem. Rev. 120, 4056–4110 (2020). https://doi.org/10.1021/acs.chemrev.9b00439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. M.-C. Chen, T.-C. Chang, S.-Y. Huang, G.-C. Chang, S.-C. Chen, H.-C. Huang, C.-W. Hu, S.M. Sze, T.-M. Tsai, D.-S. Gan, F.-S. Yeh, M.-J. Tsaif, Influence of oxygen partial pressure on resistance random access memory characteristics of indium gallium zinc oxide. Electrochem. Solid-State Lett. 14(12), H475–H477 (2011). https://doi.org/10.1149/2.007112esl

    Article  CAS  Google Scholar 

  37. C.-L.L.C.-C. Tang, S.-C. Wu, P.-C. Juan, T.-K. Kang, Impact of oxygen composition of ZnO metal-oxide on unipolar resistive switching characteristics of Al/ZnO/Al resistive RAM (RRAM). Microelectron. Eng. 136, 15–21 (2015). https://doi.org/10.1016/j.mee.2015.03.027

    Article  CAS  Google Scholar 

  38. S. Papernov, M.D. Brunsman, J.B. Oliver, B.N. Hoffman, A.A. Kozlov, S.G. Demos, A. Shvydky, F.H.M. Cavalcante, L. Yang, C.S. Menoni, B. Roshanzadeh, S.T.P. Boyd, L.A. Emmert, W. Rudolph, Optical properties of oxygen vacancies in HfO2 thin films studied by absorption and luminescence spectroscopy. Opt. Express 26(13), 17608–17623 (2018). https://doi.org/10.1364/OE.26.017608

    Article  ADS  CAS  PubMed  Google Scholar 

  39. M. Dhanunjaya, D.K. Avasthi, A.P. Pathak, S.A. Khan, S.V.S. Nageswara Rao, Grain fragmentation and phase transformations in hafnium oxide induced by swift heavy ion irradiation. Appl. Phys. A 124(587), 1–10 (2018). https://doi.org/10.1007/s00339-018-2000-z

    Article  CAS  Google Scholar 

  40. H.W. ChenWang, B. Gao, T. Zhang, Y. Yang, H. Qian, Conduction mechanisms, dynamics and stability in ReRAMs. Microelectron. Eng. 187–188, 121–133 (2018). https://doi.org/10.1016/j.mee.2017.11.003

    Article  CAS  Google Scholar 

  41. S. Gao, G. Liu, Q. Chen, Improving unipolar resistive switching uniformity with cone-shape conducting filaments and its logic-in-memory application. ACS Appl. Mater. Interfaces 10(7), 6453–6462 (2018). https://doi.org/10.1021/acsami.7b19586

    Article  CAS  PubMed  Google Scholar 

  42. S.H. Writam Banerjee, S. Kim, S. Lee, D. Lee, H. Hwang, Deep insight into steep-slope threshold switching with record selectivity (> 4×1010) controlled by metal-ion movement through vacancy-induced-percolation path: quantum-level control of hybrid-filament. Adv. Funct. Mater. 31, 1–9 (2021). https://doi.org/10.1002/adfm.202104054)

    Article  Google Scholar 

  43. J.J. Desmond, P.A. Loy, S. Dananjaya, K.H. Chakrabarti, S.C.W. Tan, E.H. Chow, K. Toh, W.S. Lew, Oxygen vacancy density dependence with a hopping conduction mechanism in multilevel switching behavior of HfO2–based resistive random-access memory devices. ACS Appl. Electron. Mater. 2, 3160–3170 (2020). https://doi.org/10.1021/acsaelm.0c00515

    Article  CAS  Google Scholar 

  44. H. Aziza, S. Hamdioui, M. Fieback, M. Taouil, M. Moreau, P. Girard, A. Virazel, K. Coulié, Multi-level control of Resistive RAM (RRAM) using a write termination to achieve 4 bits/cell in high resistance state. Electronics 10, 1–15 (2021). https://doi.org/10.3390/electronics10182222

    Article  Google Scholar 

  45. D. Maldonado, S. Aldana, M.B. Gonzalez, F. Jimenez-Molinos, F. Campabadal, J.B. Roldan, Parameter extraction techniques for the analysis and modeling of resistive memories. Microelectron. Eng. 265, 111876 (2022). https://doi.org/10.1016/j.mee.2022.111876

    Article  CAS  Google Scholar 

  46. G. Baek, M.S. Lee, S. Seo, M.J. Lee, D.H. Seo, D.S. Suh, J.C. Park, S.O. Park, H.S. Kim, I.K. Yoo, U. Chung, I.T. Moon, Highly, Scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. IEDM (IEEE) 04, 587–890 (2004). https://doi.org/10.1109/IEDM.2004.1419228

    Article  Google Scholar 

  47. Y. Mutsunori Uenuma, Y. Ishikawa, Joule heating effect in nonpolar and bipolar resistive random access memory. Appl. Phys. Lett. (2015). https://doi.org/10.1063/1.4928661

    Article  Google Scholar 

  48. J. Héctor García, G. Boo, Ó.G. Vinuesa, S. Ossorio, H. Dueñas, M.B. Castán, F.C. González, Influences of the temperature on the electrical properties of HfO2-based resistive switching devices. Electronics 10, 2816 (2021). https://doi.org/10.3390/electronics10222816

    Article  CAS  Google Scholar 

  49. X. Zhang, L. Xu, H. Zhang, J. Liu, D. Tan, L. Chen, Z. Ma, W. Li, Effect of Joule heating on resistive switching characteristic in AlOx cells made by thermal oxidation formation. Nanoscale Res. Lett. 15, 11 (2020). https://doi.org/10.1186/s11671-019-3229-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

N. Arun thanks UGC-NET for providing the fellowship (JRF and SRF) and National Academy of Sciences India (NASI) for RA. APP thanks NASI, India, Prayagraj (Allahabad) for the award of NASI Sr Scientist Platinum Jubilee Fellowship. We thank Centre for Nanotechnology (CFN), University of Hyderabad for providing necessary characterization facilities.

Funding

The project fund is granted from the National Academy of Sciences India (NASI), Prayagraj (Allahabad), India.

Author information

Authors and Affiliations

Authors

Contributions

NA: Methodology, Formal analysis, Data curation, Investigation, Validation, Writing—original draft, Writing—review & editing; APP: Conceptualization, Resources, Methodology, Writing—review & editing, Supervision, Funding acquisition, Project administration; VVRKK: Conceptualization, Methodology, Writing—review & editing; MMN: Data analysis and interpretation; SVSNR: Conceptualization, Resources, Methodology, Writing—review & editing, Supervision, Funding acquisition, Project administration.

Corresponding author

Correspondence to A. P. Pathak.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. There is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arun, N., Neethish, M.M., Ravi Kanth Kumar, V.V. et al. Resistive switching properties of hafnium oxide thin-films sputtered at different oxygen partial pressures. J Mater Sci: Mater Electron 35, 235 (2024). https://doi.org/10.1007/s10854-024-12023-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12023-7

Navigation