Skip to main content
Log in

Effects of swift heavy ion irradiation on the performance of HfO2-based resistive random access memory devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the effects of 120 MeV Ag ion irradiation on the switching properties of Au/HfO2/Au-based Resistive Random Access Memory (RRAM) devices are reported. The ion fluence is varied between 5 × 1010 and 5 × 1012 ions/cm2 while two device sizes, with active areas 10 µm × 10 µm and 20 µm × 20 µm, are tested. In each case, 16 devices are subjected to ion irradiation and it is shown that the set voltages are generally lower and the spread in the switching voltages is reduced for the irradiated samples in comparison to the pristine devices. The existence of a critical dose of 5 × 1011 ions/cm2 up to which an improvement in the device performance is observed. Photoluminescence studies indicate the presence of oxygen-related vacancies in both pristine and irradiated samples, which may be the reason for the observed forming free switching behavior. Swift heavy ion irradiation is, thus, a simple but effective technique to tune the performance of HfO2-based resistive switching devices. The study also indicates the significance of radiation damage and reliability of these devices beyond a critical fluence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Available and can be produced anytime.

References

  1. M.A. Zidan, J.P. Strachan, W.D. Lu, The future of electronics based on memristive systems. Nat. Electron. 1(1), 22–29 (2018). https://doi.org/10.1038/s41928-017-0006-8

    Article  Google Scholar 

  2. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008). https://doi.org/10.1038/nature06932

    Article  CAS  Google Scholar 

  3. D. Ielmini, Resistive switching memories based on metal oxides: Mechanisms, reliability and scaling. Semicond. Sci. Technol. 31(6), 1–25 (2016). https://doi.org/10.1088/0268-1242/31/6/063002

    Article  CAS  Google Scholar 

  4. F. Palumbo, Formation and characterization of filamentary current paths in HfO2-based resistive switching structures. IEEE Electron. Dev. Lett. 33(7), 1057–1059 (2012). https://doi.org/10.1109/LED.2012.2194689

    Article  CAS  Google Scholar 

  5. A. Sawa, Resistive switching in Rapid advances in information technology rely on high-speed and. Mater. Today 11(6), 28–36 (2008). https://doi.org/10.1016/S1369-7021(08)70119-6

    Article  CAS  Google Scholar 

  6. M. Lanza, A review on resistive switching in high-k dielectrics: a nanoscale point of view using conductive atomic force microscope. Materials (Basel) 7(3), 2155–2182 (2014). https://doi.org/10.3390/ma7032155

    Article  CAS  Google Scholar 

  7. A. Chen, Solid-state electronics: a review of emerging non-volatile memory (NVM) technologies and applications. Solid State Electron. 125, 25–38 (2016). https://doi.org/10.1016/j.sse.2016.07.006

    Article  CAS  Google Scholar 

  8. S. Petzold, S.U. Sharath, J. Lemke, E. Hildebrandt, C. Trautmann, L. Alff, Heavy Ion radiation effects on hafnium oxide-based resistive random access memory. IEEE Trans. Nucl. Sci. 66(7), 1715–1718 (2019). https://doi.org/10.1109/TNS.2019.2908637

    Article  CAS  Google Scholar 

  9. M. Alayan, M. Bagatin, S. Gerardin, A. Paccagnella, L. Larcher, E. Vianello, E. Nowak, B. De Salvo, L. Perniola, Experimental and simulation studies of the effects of heavy-ion irradiation on HfO2-based RRAM cells. IEEE Trans. Nucl. Sci. 64(8), 2038–2045 (2017). https://doi.org/10.1109/TNS.2017.2721980

    Article  CAS  Google Scholar 

  10. Y. Chen, ReRAM: history, status, and future. IEEE Trans. Electron. Dev. 67(4), 1420 (2020)

    Article  CAS  Google Scholar 

  11. S. Kvatinsky, K. Talisveyberg, D. Fliter, A. Kolodny, U.C. Weiser, E.G. Friedman, Models of memristors for SPICE simulations, in 27th Conv. Electr. Electron. Eng. Isr. (IEEE, 2012) pp. 1–5 (2012). https://doi.org/10.1109/EEEI.2012.6377081

  12. X. Hong, D.J. Loy, P.A. Dananjaya, F. Tan, C. Ng, W. Lew, Oxide based RRAM materials for neuromorphic computing. J. Mater. Sci. 53(12), 8720–8746 (2018). https://doi.org/10.1007/s10853-018-2134-6

    Article  CAS  Google Scholar 

  13. R. Islam, H. Li, P. Chen, W. Wan, H. Chen, B. Gao, H. Wu, S. Yu, K. Saraswat, H. Philip Wong, Device and materials requirements for neuromorphic computing. J. Phys. D 52(11), 1–24 (2019). https://doi.org/10.1088/1361-6463/aaf784

    Article  CAS  Google Scholar 

  14. D.S. Korolev, A.N. Mikhaylov, A.I. Belov, V.A. Sergeev, I.N. Antonov, A.P. Kasatkin, O.N. Gorshkov, D.I. Tetelbaum, Influence of ion irradiation on the resistive switching parameters of SiOx-based thin-film structures. J. Phys. Conf. Ser. 643(1), 1–5 (2015). https://doi.org/10.1088/1742-6596/643/1/012094

    Article  CAS  Google Scholar 

  15. B. Butcher, X. He, M. Huang, Y. Wang, Qi. Liu, H. Lv, M. Liu, W. Wang, Proton-based total-dose irradiation effects on Cu/HfO2:Cu/Pt ReRAM devices. Nanotechnology 21(47), 1–5 (2010). https://doi.org/10.1088/0957-4484/21/47/475206

    Article  CAS  Google Scholar 

  16. D.M. Fleetwood, P.S. Winokur, J.R. Schwank, Using laboratory X-Ray and cobalt-60 irradiations to predict CMOS device response in strategic and space environments. IEEE Trans. Electron. Dev. 35(6), 1497–1505 (1988)

    Google Scholar 

  17. U.S. Joshi, Ion irradiation: a tool to understand oxide RRAM mechanism. Rad. Eff. Def. Sol. 166(8–9), 724–733 (2011). https://doi.org/10.1080/10420150.2011.583246

    Article  CAS  Google Scholar 

  18. X. Lian, E. Miranda, S. Long, L. Perniola, M. Liu, J. Suñé, Threestate resistive switching in HfO2-based RRAM. Solid. State. Electron. 98, 38–44 (2014). https://doi.org/10.1016/j.sse.2014.04.016

    Article  CAS  Google Scholar 

  19. N. Arun, K.V. Kumar, A.P. Pathak, D.K. Avasthi, S.V.S. Nageswara Rao, Hafnia-based resistive switching devices for nonvolatile memory applications and effects of gamma irradiation on device performance. Rad. Eff. Def. Sol. 173(3–4), 239–249 (2018). https://doi.org/10.1080/10420150.2018.1425863

    Article  CAS  Google Scholar 

  20. L.D.V. Sangani, C.R. Kumar, M.G. Krishna, Interfacial electrode-driven enhancement of the switching parameters of a copper oxide-based resistive random-access memory device. J. Electron. Mater. 45(1), 322–328 (2016). https://doi.org/10.1007/s11664-015-4074-0

    Article  CAS  Google Scholar 

  21. L.D.V. Sangani, K.V. Sri, M.A. Mohiddon, M.G. Krishna, Low temperature Au induced crystallization of titanium dioxide thin films for resistive switching applications. RSC Adv. 5(83), 67493–67499 (2015). https://doi.org/10.1039/c5ra09022a

    Article  CAS  Google Scholar 

  22. W. Duan, J. Wang, X. Zhong, The effect of rays irradiation on the electrical properties of WOx) film-based memory cells. Lett. J. Explor. Front. Phys. 119, 27003-P1-27003-P4 (2017). https://doi.org/10.1209/0295-5075/119/27003

    Article  CAS  Google Scholar 

  23. N. Manikanthababu, N. Arun, M. Dhanunjaya, V. Saikiran, S.V.S. Nageswara Rao, A.P. Pathak, Synthesis, characterization and radiation damage studies of high-k dielectric (HfO2) films for MOS device applications. Rad. Eff. Def. Sol. 170(3), 207–217 (2015). https://doi.org/10.1080/10420150.2014.980259

    Article  CAS  Google Scholar 

  24. N. Arun, J. Prabana, K.V. Kumar, A.P. Pathak, S.V.S. Nageswara, Fabrication of HfO2 based MOS and RRAM devices: a study of thermal annealing effects on these devices. AIP. Proc. 030216, 4–7 (2019). https://doi.org/10.1063/1.5113055

    Article  CAS  Google Scholar 

  25. N. Manikanthababu, S. Vajandar, N. Arun, A.P. Pathak, K. Asokan, T. Osipowicz, T. Basu, S.V.S. Nageswara Rao, Electronic excitation induced defect dynamics in HfO2 based MOS devices investigated by in-situ electrical measurements. Appl. Phys. Lett. 112(131601), 1–5 (2018). https://doi.org/10.1063/1.5012269

    Article  CAS  Google Scholar 

  26. M.R. Shaneyfelt, D.M. Fleetwood, J.R. Schwank, K.L. Hugh, Charge yield for cobalt-60 And 10-Kev X-ray irradiations Of MOS devices. IEEE Trans. Electron. Dev. 38(6), 1187–1194 (1991)

    Google Scholar 

  27. A. Benyagoub, Mechanism of the monoclinic-to-tetragonal phase transition induced in zirconia and hafnia by swift heavy ions. Phys. Rev. B 72(9), 21–24 (2005). https://doi.org/10.1103/PhysRevB.72.094114

    Article  CAS  Google Scholar 

  28. M. Dhanunjaya, D.K. Avasthi, A.P. Pathak, S.A. Khan, S.V.S. Nageswara Rao, Grain fragmentation and phase transformations in hafnium oxide induced by swift heavy ion irradiation. Appl. Phys. A 124(587), 1–10 (2018). https://doi.org/10.1007/s00339-018-2000-z

    Article  CAS  Google Scholar 

  29. M. Dhanunjaya, S.A. Khan, A.P. Pathak, D.K. Avasthi, S.V.S. Nageswara Rao, Ion induced crystallization and grain growth of hafnium oxide nano-particles in thin-films deposited by radio frequency magnetron sputtering. J. Phys. D 50, 1–8 (2017). https://doi.org/10.1088/1361-6463/aa9723

    Article  CAS  Google Scholar 

  30. N. Arun, K. Vinod Kumar, A. Mangababu, S.V.S. Nageswara Rao, A.P. Pathak, Influence of the bottom metal electrode and gamma irradiation effects on the performance of HfO2-based RRAM devices. Rad. Eff. Def. Sol. 174(1–2), 66–75 (2019). https://doi.org/10.1080/10420150.2019.1579213

    Article  CAS  Google Scholar 

  31. F. El Kamel, Z. Ben Cheikh, M.A. Soussou, A. Moadhen, K. Khirouni, Structural, optical and dielectric characterization of Au/HfO2/(Pt, TiN) capacitors. Thin Solid Films 645, 282–289 (2018). https://doi.org/10.1016/j.tsf.2017.10.061

    Article  CAS  Google Scholar 

  32. N. Manikanthababu, N. Arun, M. Dhanunjaya, S.V.S. Nageswara Rao, A.P. Pathak, Gamma irradiation-induced effects on the electrical properties of HfO2based MOS devices. Rad. Eff. Def. Sol. 171(1–2), 77–86 (2016). https://doi.org/10.1080/10420150.2015.1135152

    Article  CAS  Google Scholar 

  33. R. Waser, R. Dittmann, C. Staikov, K. Szot, Redox-based resistive switching memories nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009). https://doi.org/10.1002/adma.200900375

    Article  CAS  Google Scholar 

  34. P.C. Akshara, N. Basu, J. Lahiri, G. Rajaram, M.G. Krishna, Resistive switching behaviour of amorphous silicon carbide thin films fabricated by a single composite magnetron sputter deposition method. Bull. Mater. Sci. 43(123), 1–8 (2020). https://doi.org/10.1007/s12034-020-02093-8

    Article  CAS  Google Scholar 

  35. J.Y. Son, D.Y. Kim, H. Kim, W.J. Maeng, Y.S. Shin, Y.H. Shine, A HfO2 thin film resistive switch based on conducting atomic force microscopy. Electrochem Solid-State Lett 14(8), 311–313 (2011). https://doi.org/10.1149/1.3574526

    Article  CAS  Google Scholar 

  36. H. Akinaga, H. Shima, Resistive random access memory (ReRAM) based on metal oxides. Proc. IEEE 98(12), 2237–2251 (2010). https://doi.org/10.1109/JPROC.2010.207083

    Article  CAS  Google Scholar 

  37. G. Sassine, L. Barbera, N. Najjari, D. Lyon, E.C. De Lyon, Interfacial versus filamentary resistive switching in TiO2 and HfO2 devices Interfacial versus filamentary resistive switching in TiO2 and HfO2 devices. J. Vac. Sci. Technol. B 34(1), 012202-1-012202–6 (2016). https://doi.org/10.1116/1.4940129

    Article  CAS  Google Scholar 

  38. K.H. Xue, B. Traore, P. Blaise, L.R. Fonseca, E. Vianello, G. Molas, B. De Salvo, G. Ghibaudo, B. Magyari-Kope, Y. Nishi, A combined ab initio and experimental study on the nature of conductive filaments in Pt/HfO2/Pt resistive random access memory. IEEE Trans. Electron. Dev. 61(5), 1394–1402 (2014). https://doi.org/10.1109/TED.2014.2312943

    Article  CAS  Google Scholar 

  39. U. Celano, Y. Yin Chen, D.J. Wouters, G. Groeseneken, M. Jurczak, W. Vandervorst, Filament observation in metal-oxide resistive switching devices. Appl. Phys. Lett. 102(12), 2011–2014 (2013). https://doi.org/10.1063/1.4798525

    Article  CAS  Google Scholar 

  40. K.L. Lin, T.H. Hou, J. Shieh, J.H. Lin, C.T. Chou, Y.J. Lee, Electrode dependence of filament formation in HfO2 resistive-switching memory. J. Appl. Phys. 109, 084104 (2011). https://doi.org/10.1063/1.3567915

    Article  CAS  Google Scholar 

  41. J.H. Stathis, Reliability limits for the gate insulator in CMOS technology. IBM J. Res. Dev. 46(2/3), 265–286 (2002)

    Article  CAS  Google Scholar 

  42. M.A. Alam, B.E. Weir, P.J. Silverman, A study of soft and hard breakdown—part II: principles of area, thickness, and voltage scaling. IEEE Trans. Electrin. Dev. 49(2), 232–238 (2002)

    Article  CAS  Google Scholar 

  43. F. Nardi, C. Cagli, D. Ielmini, S. Spiga, Reset current reduction and set-reset instabilities in unipolar NiO RRAM, International Memory Workshop (2011), pp. 160–163

  44. T. Tan, Du. Yihang, Ai. Cao, Y. Sun, H. Zhang, G. Zha, Resistive switching of the HfOx/HfO2 bilayer heterostructure and its transmission characteristics as a synapse. RSC Adv. 8, 41884–41891 (2018). https://doi.org/10.1039/c8ra06230g

    Article  CAS  Google Scholar 

  45. H.Y. Lee, Y.S. Chen, P.S. Chen, T.Y. Wu, F. Chen, C.C. Wang, P.J. Tzeng, M.-J. Tsai, C. Lien, Low-power and nanosecond switching in robust hafnium oxide resistive memory with a thin Ti cap. IEEE Trans. Electron. Dev. 31(1), 44–46 (2010). https://doi.org/10.1109/LED.2009.2034670

    Article  CAS  Google Scholar 

  46. S. Lee, W.-G. Kim, S.-W. Rhee, K. Yong, Resistance switching behaviors of hafnium oxide films grown by MOCVD for nonvolatile memory applications. J. Electrochem. Soc. 155(2), 92–96 (2008). https://doi.org/10.1149/1.2814153

    Article  CAS  Google Scholar 

  47. Heng Yuan Lee, Pang Shiu Chen, Tai Yuan Wu, Ching Chiun Wang, Pei Jer Tzeng, Cha Hsin Lin, Frederick, Chen, Ming-Jinn Tsai, and Chenhsin Lien”, Electrical evidence of unstable anodic interface in Ru/HfOx/TiN unipolar resistive memory”. Appl. Phys. Lett. 92, 142911 (2008). https://doi.org/10.1063/1.2908928

    Article  CAS  Google Scholar 

  48. M.Y. Chan, T. Zhang, V. Ho, P.S. Lee, Resistive switching effects of HfO2 high-k dielectric. Microelectron. Eng. 85, 2420–2424 (2008). https://doi.org/10.1016/j.mee.2008.09.021

    Article  CAS  Google Scholar 

  49. T. Nagata, M. Haemori, Y. Yamashita, H. Yoshikawa, Y. Iwashita, K. Kobayashi, Oxygen migration at Pt/HfO2/Pt interface under bias operation. Appl. Phys. Lett. 97, 082902-1-082902–3 (2010). https://doi.org/10.1063/1.3483756

    Article  CAS  Google Scholar 

  50. K.M. Neyman, C. Inntam, A.V. Matveev, V.A. Nasluzov, N. Rösch, Single d-metal atoms on Fs and Fs+ defects of MgO(001): a theoretical study across the periodic table. J. Am. Chem. Soc. 127, 11652–11660 (2005). https://doi.org/10.1021/ja052437i

    Article  CAS  Google Scholar 

  51. X.-Q. Gong, A. Selloni, O. Dulub, P. Jacobson, U. Diebold, Small Au and Pt clusters at the anatase TiO2(101) surface: behavior at terraces, steps, and surface oxygen vacancies. J. Am. Chem. Soc. 130, 370–381 (2008). https://doi.org/10.1021/ja0773148

    Article  CAS  Google Scholar 

  52. P. Gonon, M. Mougenot, C. Vallée, C. Jorel, V. Jousseaume, H. Grampeix, F. El Kamel, Resistance switching in HfO2 metal-insulator-metal devices. J. Appl. Phys. 107, 074507 (2010). https://doi.org/10.1063/1.3357283

    Article  CAS  Google Scholar 

  53. R. Nakajima, A. Azuma, H. Yoshida, T. Shimizu, T. Ito, S. Shingubara, Hf layer thickness dependence of resistive switching characteristics of Ti/Hf/HfO2/Au resistive random access memory device. Jpn. J. Appl. Phys. 57(61), 066 (2018). https://doi.org/10.7567/JJAP.57.06HD06

    Article  Google Scholar 

  54. D.S. Jeong, H. Schroeder, U. Breuer, R. Waser, Characteristic electroforming behavior in Pt/TiO 2/Pt resistive switching cells depending on atmosphere. J. Appl. Phys. 104(12), 123716 (2008). https://doi.org/10.1063/1.3043879

    Article  CAS  Google Scholar 

  55. X. Zhang, Resistive switching characteristics of Ni/HfO2/Pt ReRAM. J. Semicond. 33(5), 2011–2013 (2012). https://doi.org/10.1088/1674-4926/33/5/054011

    Article  CAS  Google Scholar 

  56. A. Chen, Area and thickness scaling of forming voltage of resistive switching memories. IEEE Electron Device Lett. 35(1), 57–59 (2014). https://doi.org/10.1109/LED.2013.2288262

    Article  Google Scholar 

  57. Y. Li, S. Long, Y. Liu, C. Hu, J. Teng, Q. Liu, H. Lv, J. Suñé, M. Liu, Conductance quantization in resistive random access memory. Nanoscale Res Lett 10(1), 420 (2015). https://doi.org/10.1186/s11671-015-1118-6

    Article  CAS  Google Scholar 

  58. G. Niu, P. Calka, M.A. der Maur, F. Santoni, S. Guha, M. Fraschke, P. Hamoumou, B. Gautier, E. Perez, C. Walczyk, C. Wenger, Geometric conductive filament confinement by nanotips for resistive switching of HfO 2-RRAM devices with high performance. Sci. Rep. 6(1), 1–9 (2016). https://doi.org/10.1038/srep25757

    Article  CAS  Google Scholar 

  59. M. Kong, B. Li, C. Guo, P. Zeng, M. Wei, W. He, The optical absorption and photoluminescence characteristics of evaporated and IAD HfO2 thin films. Coatings 9, 307 (2019). https://doi.org/10.3390/coatings9050307

    Article  CAS  Google Scholar 

  60. J.W. Strand, J. Cottom, L. Larcher, A.L. Shluger, Effect of electric field on defect generation and migration in HfO2. Phys. Rev. B 102, 014106 (2020). https://doi.org/10.1103/PhysRevB.102.014106

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N. Arun thanks UGC-NET for providing the fellowship. APP thanks National Academy of Sciences, India, Prayagraj (Allahabad) for the award of NASI Sr Scientist Platinum Jubilee Fellowship. We thank IUAC, New Delhi for financial support and for access to its facilities. We thank Centre for Nanotechnology (CFN), University of Hyderabad for providing necessary characterization facilities. We also thank DST-PURSE (India), UGC-NRC and UGC-SAP- DRS-I, CASEST, SOP, UOH programs for support.

Funding

UFR Project of IUAC, New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

All authors have significant contribution to the work and the manuscript is submitted with the consent of all authors.

Corresponding author

Correspondence to S. V. S. Nageswara Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arun, N., Sangani, L.D.V., Vinod Kumar, K. et al. Effects of swift heavy ion irradiation on the performance of HfO2-based resistive random access memory devices. J Mater Sci: Mater Electron 32, 2973–2986 (2021). https://doi.org/10.1007/s10854-020-05049-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05049-0

Navigation