Skip to main content
Log in

Effect of stress on ferroelectric properties in flexible BiFe0.97Cr0.03O3/BiFe1−xMnxO3 composite thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Wearable devices and flexible electronics have promoted the development of flexible thin film materials. Flexible films with excellent performance and adapted to the operating conditions of flexible electronic devices are required. Here, the flexible BiFe0.97Cr0.03O3/BiFe1−xMnxO3 (x = 0.05–0.09) ferroelectric thin films were successfully prepared on LaNiO3/fluorophlogopite (F-Mica) by the sol–gel method. The flexible BiFe0.97Cr0.03O3/BiFe0.93Mn0.07O3 (BFC0.03O/BFM0.07O) sample shows a best ferroelectricity with a real residual polarization value of 106.59 µC/cm2 was obtained from the Positive Up Negative Down (PUND). The flexible sample maintains true ferroelectric performance at different frequencies and shows excellent bending fatigue resistance after mechanical bending with 10000 cycles. The residual stress generated by mechanical bending increases the polarization of the flexible sample while maintaining the true ferroelectric polarization. The larger residual stress results in the enlargement of the defect. This provides an interesting approach to the ferroelectric regulation of flexible thin films. The flexible BiFe0.97Cr0.03O3/BiFe1−xMnxO3 thin films with excellent ferroelectricity and bending fatigue resistance are promising for the applications in high temperature flexible electronic components and sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  1. C. Bin, X. Hou, K. Wang, L. Liao, Y. Xie, H. Yang, H. Wei, Y. Liu, J. Wang, Interlayer coupling enhanced energy storage performance in a flexible BMT-BTO/BMT multilayer ferroelectric film capacitor. ACS Appl. Mater. Interfaces. 14, 50880–50889 (2022)

    Article  CAS  PubMed  Google Scholar 

  2. A.R. Jayakrishnan, A. Kumar, S. Druvakumar, J. Rosmin, M. Sudeesh, V.S. Puli, J. Silva, M. Gomes, K.C. Sekhar, Inorganic ferroelectric thin films and their composites for flexible electronic and energy device applications: current progress and perspectives. J. Mater. Chem. C 11, 827–858 (2023)

    Article  CAS  Google Scholar 

  3. M. Tsai, J. Jiang, P. Shao, Y. Lai, J. Chen, S. Ho, Y. Chen, D. Tsai, Y. Chu, Oxide heteroepitaxy-based flexible ferroelectric transistor. ACS Appl. Mater. Interfaces. 11, 25882–25890 (2019)

    Article  CAS  PubMed  Google Scholar 

  4. J. Zhou, D. Sando, M. Summers, Y. Jia, K. Wang, N. Valanoor, Q. Zhang, Gelation chemistry and phase development of chemical solution deposition-derived Sm-doped BiFeO3 thin films: the role of Sm dopant. ACS Appl. Electron. Mater. 5, 1302–1310 (2023)

    Article  CAS  Google Scholar 

  5. B. Sun, G. Zhou, L. Sun, H. Zhao, Y. Chen, F. Yang, Y. Zhao, Q. Song, ABO3 multiferroic perovskite for memristive memory and neuromorphic computing. Nanoscale Horiz. 6, 939–970 (2021)

    Article  CAS  PubMed  ADS  Google Scholar 

  6. T. Li, R. Li, Y. Chen, J. Liu, B. Li, L. Ju, K. Li, Z. Hu, The effect of thickness-dependent strain relaxation on magnetoelectric behaviors for highly C-axis oriented BiFeO3 films on Si substrate. J. Magn. Magn. Mater. 545, 168739 (2022)

    Article  CAS  Google Scholar 

  7. C.R. Joshi, M. Acharya, M.S. Sheikh, J. Plombon, A. Gupta, Effect of cobalt substitution on the structural, ferroelectric, and magnetic properties of bismuth ferrite thin films. J. Appl. Phys. 132, 194102 (2022)

    Article  CAS  ADS  Google Scholar 

  8. L. Jin, M. Lin, C. Li, D. Song, B. Yang, X. Zhu, Evolution of structure and electrical properties of epitaxial BiFeO3 thin films through solution and annealing atmosphere. J. Alloy Compd. 843, 155910 (2020)

    Article  CAS  Google Scholar 

  9. M. Tomczyk, A. Mahajan, A. Tkach, P.M. Vilarinho, Interface-based reduced coercivity and leakage currents of BiFeO3 thin films: a comparative study. Mater. Des. 160, 1322–1334 (2018)

    Article  CAS  Google Scholar 

  10. X. Liu, P. Li, C. Jin, H. Bai, Enhancement of the magnetization in the Fe3O4/BiFeO3 epitaxial heterostructures fabricated by magnetron sputtering. Appl. Phys. Lett. 99, 182511 (2011)

    Article  ADS  Google Scholar 

  11. C. Prakash, A.K. Yaday, A. Dixit, Low power highly flexible BiFeO3-based resistive random access memory (RRAM) with the coexistence of negative differential resistance (NDR). Phys. Chem. Chem. Phys. 25, 19868–19881 (2023)

    Article  CAS  PubMed  Google Scholar 

  12. A.I. Kingon, S. Srinivasan, Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications. Nat. Mater. 4, 233–237 (2005)

    Article  CAS  ADS  Google Scholar 

  13. J. Wu, Z. Fan, D. Xiao, J. Zhu, J. Wang, Multiferroic bismuth ferrite-based materials for multifunctional applications: ceramic bulks, thin films and nanostructures. Prog. Mater. Sci. 84, 335–402 (2016)

    Article  CAS  Google Scholar 

  14. J. Chen, W. Xing, Q. Yun, W. Gao, C. Nie, S. Zhao, Effects of Ho, Mn co-doping on ferroelectric fatigue of BiFeO3 thin films. Electron. Mater. Lett. 11, 601–608 (2015)

    Article  CAS  ADS  Google Scholar 

  15. M. Guo, G. Tan, W. Yang, L. Lv, M. Xue, Y. Liu, H. Ren, A. Xia, Resistive switching and ferroelectric properties in BiFeO3 superlattice films. Mater. Lett. 228, 13–16 (2018)

    Article  CAS  Google Scholar 

  16. P. Zheng, B. Sun, Y. Chen, H. Elshekh, T. Yu, S. Mao, S. Zhu, H. Wang, Y. Zhao, Z. Yu, Photo-induced negative differential resistance in a resistive switching memory device based on BiFeO3/ZnO heterojunctions. Appl. Mater. Today. 14, 21–28 (2019)

    Article  ADS  Google Scholar 

  17. L. Yin, W. Liu, G. Tan, H. Ren, Two-phase coexistence and multiferroic properties of Cr-doped BiFeO3 thin films. J. Supercond. Nov. Magn. 27, 2765–2772 (2014)

    Article  CAS  Google Scholar 

  18. G. Kolhatkar, F. Ambriz-Vargas, R. Thomas, A. Ruediger, Microwave-assisted hydrothermal synthesis of BiFexCr1–xO3 ferroelectric thin films. Cryst. Growth Des. 17, 5697–5703 (2017)

    Article  CAS  Google Scholar 

  19. P. Kharel, S. Talebi, B. Ramachandran, A. Dixit, V.M. Naik, M.B. Sahana, C. Sudakar, R. Naik, M.S.R. Rao, G. Lawes, Structural, magnetic, and electrical studies on polycrystalline transition-metal-doped BiFeO3 thin films. J. Phys.-Condens. Matter 21, 036001 (2009)

    Article  CAS  PubMed  ADS  Google Scholar 

  20. D. Ao, W. Liu, C. Liu, S. Dong, X. Wang, H. Ren, A. Xia, G. Tan, Anisotropic saturation magnetization in flexible BiFe0.95Cr0.05O3/BiFe0.95Mn0.05O3 superlattice thin films by sol–gel. Micro and Nanostruct. 166, 207230 (2022)

    Article  CAS  Google Scholar 

  21. Z.J. Simón, J.A. López, J.A. Luz, G.O. Conde, K.M. Leyva, O.R. Herrera, M. Moreno, H.P. Hernández, E. Flores, Outstanding photoelectrical response in BiFeO3 hollow microspheres deposited by ultrasonic spray pyrolysis technique. J. Alloy Compd. 955, 170215 (2023)

    Article  Google Scholar 

  22. M.N. Iliev, A.P. Litvinchuk, V.G. Hadjiev, M.M. Gospodinov, V. Skumryev, E. Ressouche, Phonon and magnon scattering of antiferromagnetic Bi2Fe4O9. Phys. Rev. B 81, 024302 (2010)

    Article  ADS  Google Scholar 

  23. H. Hu, S.B. Krupanidhi, Current–voltage characteristics of ultrafine-grain ferroelectric pb(Zr, Ti)O3 thin films. J. Mater. Res. 9, 1484–1498 (1994)

    Article  CAS  ADS  Google Scholar 

  24. W. Xing, Y. Ma, Z. Ma, Y. Bai, J. Chen, S. Zhao, Improved ferroelectric and leakage current properties of Er-doped BiFeO3 thin films derived from structural transformation. Smart Mater. Struct. 23, 085030 (2014)

    Article  CAS  ADS  Google Scholar 

  25. X. Liang, J. Dai, G. Zhang, Great ferroelectric properties and narrow bandgaps of BiFeO3 thin films by (mg, mn) modifying. Appl. Surf. Sci. 586, 152751 (2022)

    Article  CAS  Google Scholar 

  26. C. Nie, S. Zhao, Y. Bai, Q. Lu, The ferroelectric photovoltaic effect of BiCrO3/BiFeO3 bilayer composite films. Ceram. Int. 42, 14036–14040 (2016)

    Article  CAS  Google Scholar 

  27. T. Schenk, E. Yurchuk, S. Mueller, U. Schroeder, S. Starschich, U. Böttger, T. Mikolajick, About the deformation of ferroelectric hystereses. Appl. Phys. Rev. 1, 041103 (2014)

    Article  ADS  Google Scholar 

  28. W. Cai, C. Fu, Z. Lin, X. Deng, Vanadium doping effects on microstructure and dielectric properties of barium titanate ceramics. Ceram. Int. 37, 3643–3650 (2011)

    Article  CAS  Google Scholar 

  29. W. Liu, M. Liu, R. Ma, R. Zhang, W. Zhang, D. Yu, Q. Wang, J. Wang, H. Wang, Mechanical strain-tunable microwave magnetism in flexible CuFe2O4 epitaxial thin film for wearable sensors. Adv. Funct. Mater. 28, 1705928 (2018)

    Article  Google Scholar 

  30. C. Röder, F. Lipski, F. Habel, G. Leibiger, M. Abendroth, C. Himcinschi, J. Kortus, Raman spectroscopic characterization of epitaxially grown GaN on sapphire. J. Phys. D: Appl. Phys. 46, 285302 (2013)

    Article  Google Scholar 

  31. M. Lee, S. Chang, Y. Wu, M. Tang, C. Lin, Mechanical bending cycles of hydrogenated amorphous silicon layer on plastic substrate by plasma-enhanced chemical vapor deposition for use in flexible displays. Jpn J. Appl. Phys. 48, 021301 (2009)

    Article  ADS  Google Scholar 

  32. H. Luo, P. Song, A. Khan, J. Feng, J.J. Zang, X.P. Xiong, J.G. Lü, J.S. Lu, Effects of the metal-ceramic transition region on the mechanical properties and crack propagation behavior of an Al2O3-40 wt% TiO2 coating. Surf. Coat. Tech. 321, 200–212 (2017)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (52002235, 52002236). It was also partially supported by Doctoral Scientific Research Startup Foundation of Shaanxi University of Science and Technology (No. 2019BJ-30).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by DA and SL. Experimental program planning and experimental guidance were performed by WL and GT. Software technical services were supported by DL, JZ, QY and DL. The manuscript was polished by AX. The first draft of the manuscript was written by DA, SL, and WL. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wenlong Liu or Guoqiang Tan.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ao, D., Liu, S., Liu, W. et al. Effect of stress on ferroelectric properties in flexible BiFe0.97Cr0.03O3/BiFe1−xMnxO3 composite thin films. J Mater Sci: Mater Electron 35, 247 (2024). https://doi.org/10.1007/s10854-024-12004-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12004-w

Navigation