Skip to main content
Log in

A voltammetric epinine sensor based on MWCNTs/ZnCo-ZIF nanocomposite and ionic liquid modified electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Epinine is prescribed as a natural medicine with the nature of catecholamine and pharmacologic properties similar to epinephrine. The current attempt was made to introduce a novel ultrasensitive epinine electrochemical sensor based on surface modification of carbon paste electrode (CPE) by using multi walled carbon nanotubes (MWCNTs)/Zn-Co zeolite imidazolate framework (ZnCo-ZIF) and n-hexyl-3-methylimidazolium hexafluorophosphate ionic liquid (IL) (MWCNTs/ZnCo-ZIF/IL/CPE sensor). The sensor possessed a commendable voltammetric response over the electro-oxidation of epinine with a linear dynamic range as broad as 0.08–375.0 µM, a limit of detection (LOD) (S/N = 3) as narrow as 0.02 µM, and a sensitivity as high as 0.1443 µA/mM/cm2. The applicability of modified electrode was authenticated for sensing of epinine in the real specimens and as a result, appreciable relative standard deviations (RSDs) (1.9–3.5%) and recoveries (98.0–103.3%) were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. H. Karimi-Maleh, M. Sheikhshoaie, I. Sheikhshoaie, M. Ranjbar, J. Alizadeh, N.W. Maxakato, A. Abbaspourrad, A novel electrochemical epinine sensor using amplified CuO nanoparticles and an-hexyl-3-methylimidazolium hexafluorophosphate electrode. New. J. Chem. 43, 2362–2367 (2019)

    CAS  Google Scholar 

  2. C.J. Byrne, S. Khurana, A. Kumar, T.C. Tai, Inflammatory signaling in hypertension: regulation of adrenal catecholamine biosynthesis. Front. Endocrinol. 9, 343 (2018)

    Google Scholar 

  3. A. Alves Freitas, I. Cruz Vieira, Sensor modified with gold nanoparticles stabilized in dialdehyde starch/dmso matrix for methyldopa detection. Electroanalysis 35, e202100529 (2023)

    CAS  Google Scholar 

  4. S. Baluta, A. Lesiak, J. Cabaj, Graphene quantum dots-based electrochemical biosensor for catecholamine neurotransmitters detection. Electroanalysis. 30, 1781–1790 (2018)

    Google Scholar 

  5. T. Tavana, A.R. Rezvani, H. Karimi-Maleh, Pt‐doped NiO nanoparticle‐ionic liquid modified electrochemical sensor: a powerful approach for determination of epinine in the presence of phenylephrine as two blood pressure raising drugs. Electroanalysis. 32, 1828–1833 (2020)

    CAS  Google Scholar 

  6. R. Gifford, W.C. Randolph, F.C. Heineman, J.A. Ziemniak, Analysis of epinine and its metabolites in man after oral administration of its pro-drug ibopamine using high-performance liquid chromatography with electrochemical detection. J. Chromatogr. B: Biomed. Sci. App. 381, 83–93 (1986)

    CAS  Google Scholar 

  7. I. Martı́nez-Mir, V. Palop, F.J. Morales-Olivas, L. Estañ, E. Rubio, The effects of epinine on arterial blood pressure and regional vascular resistances in anesthetized rats. Gen. Pharmacol: Vascular Syst. 31, 75–79 (1998)

    Google Scholar 

  8. F. Boomsma, G. Alberts, F.A. Van Der Hoorn, In’t Veld, simultaneous determination of free catecholamines and epinine and estimation of total epinine and dopamine in plasma and urine by high-performance liquid chromatography with fluorimetric detection. J. Chromatogr. B: Biomed. Sci. Appl. 574, 109–117 (1992)

    CAS  Google Scholar 

  9. H. He, C.M. Stein, B. Christman, A.J. Wood, Determination of catecholamines in sheep plasma by high-performance liquid chromatography with electrochemical detection: comparison of deoxyepinephrine and 3, 4-dihydroxybenzylamine as internal standard. J. Chromatogr. B: Biomed. Sci. App. 701, 115–119 (1997)

    CAS  Google Scholar 

  10. N.R. Musso, C. Vergassola, A. Pende, G. Lotti, Simultaneous measurement of plasma catecholamine (norepinephrine, epinephrine, and dopamine) and free N—Methyl dopamine (epinine) levels, by HPLC with electrochemical detection. J. Liq Chromatogr. 13, 2217–2228 (1990)

    CAS  Google Scholar 

  11. C. Hua, H.K. Lee, A.K. Hsieh, Determination of epinine in human urine by high-performance liquid chromatography coupled with electrochemical detection using carbon fiber microelectrodes. Electroanalysis. 6, 1147–1149 (1994)

    CAS  Google Scholar 

  12. M. Shabani-Nooshabadi, H. Karimi-Maleh, F. Tahernejad-Javazmi, Fabrication of an electroanalytical sensor for determination of deoxyepinephrine in the presence of uric acid using CuFe2O4 nanoparticle/ionic liquid amplified sensor. J. Electrochem. Soc. 166, H218 (2019)

    CAS  Google Scholar 

  13. S. Shahraki, M. Masrournia, H. Karimi-Maleh, Fabrication of electrochemical sensor for epinine determination amplified with MgO/CNTs nanocomposite and ionic liquid. Curr. Anal. Chem. 18, 125–132 (2022)

    CAS  Google Scholar 

  14. S. Tajik, H. Beitollahi, H.W. Jang, M. Shokouhimehr, A screen printed electrode modified with Fe3O4@polypyrrole-Pt core-shell nanoparticles for electrochemical detection of 6-mercaptopurine and 6-thioguanine. Talanta. 232, 122379 (2021)

    CAS  PubMed  Google Scholar 

  15. S.Z. Mohammadi, Y.M. Baghelani, F. Mousazadeh, S. Rahimi, M. Mohammad-Hassani, Electrochemical determination of amaranth in food samples by using modified electrode. J. Electrochem. Sci. Eng. 12, 1165–1177 (2022)

    CAS  Google Scholar 

  16. M. Nazari, H. Asadollahzadeh, M. Shahidi, N. Rastakhiz, S.Z. Mohammadi, Sensitive determination of hydroxylamine by using modified electrode by La2O3–Co3O4 nanocomposite and ionic liquid. Mat. Chem. Phys. 286, 126209 (2022)

    CAS  Google Scholar 

  17. F. Garkani Nejad, S. Tajik, H. Beitollahi, I. Sheikhshoaie, Magnetic nanomaterials based electrochemical (bio) sensors for food analysis. Talanta. 228, 122075 (2021)

    CAS  PubMed  Google Scholar 

  18. F. Emambakhsh, H. Asadollahzadeh, N. Rastakhiz, S.Z. Mohammadi, Highly sensitive determination of Bisphenol A in water and milk samples by using magnetic activated carbon – cobalt nanocomposite-screen printed electrode. Microchem J. 179, 107466 (2022)

    CAS  Google Scholar 

  19. S.Z. Mohammadi, S. Tajik, F. Mousazadeh, E. Baghadam-Narouei, Garkani Nejad, ZnO hollow quasi-spheres modified screen-printed graphite electrode for determination of carmoisine. Micromachines. 14, 1433 (2023)

    PubMed  PubMed Central  Google Scholar 

  20. J. Mohanraj, D. Durgalakshmi, R.A. Rakkesh, S. Balakumar, S. Rajendran, H. Karimi-Maleh, Facile synthesis of paper based graphene electrodes for point of care devices: a double stranded DNA (dsDNA) biosensor. J. Coll. Int. Sci. 566, 463–472 (2020)

    ADS  CAS  Google Scholar 

  21. M. Vardini, N. Abbasi, A. Kaviani, M. Ahmadi, E. Karimi, Graphite electrode potentiometric sensor modified by surface imprinted silica gel to measure valproic acid. Chem. Methodol. 6, 398–408 (2022)

    CAS  Google Scholar 

  22. H. Pyman, Design and fabrication of modified DNA-Gp nano-biocomposite electrode for industrial dye measurement and optical confirmation. Prog Chem. Biochem. Res. 5, 391–405 (2022)

    Google Scholar 

  23. H.A. Roshanfekr, Simple specific dopamine Aptasensor based on partially reduced Graphene Oxide–AuNPs composite. Prog Chem. Biochem. Res. 6, 79–88 (2023)

    CAS  Google Scholar 

  24. T. Rohani, S.Z. Mohammadi, A. Beheshti-Marnani, H. Taghizadeh, Cobalt nanoparticles introduced to activated carbon, CoNP/AC, as an effective electrocatalyst for oxidation and determination of methanol and ethanol. Int. J. Hydrog Energy. 47, 6837–6847 (2022)

    CAS  Google Scholar 

  25. S. Tajik, H. Beitollahi, F. Garkani Nejad, M. Safaei, K. Zhang, Q. Van Le, R.S. Varma, H.W. Jang, M. Shokouhimehr, Developments and applications of nanomaterial-based carbon paste electrodes. RSC Adv. 10, 21561–21581 (2020)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. S.Z. Mohammadi, F. Mousazadeh, S. Tajik, Simultaneous determination of doxorubicin and dasatinib by using screen-printed electrode/Ni – fe layered double hydroxide. Ind. Eng. Chem. Res. 62, 4646–4654 (2023)

    CAS  Google Scholar 

  27. M. Singh, M. Chauhan, Y.K. Mishra, S.L. Wallen, G. Kaur, A. Kaushik, G.R. Chaudhary, Novel synthesis of amorphous CP@HfO2 nanomaterials for high-performance electrochemical sensing of 2-naphthol. J. Nanostruct. Chem. 13, 1–6 (2022)

    Google Scholar 

  28. Z. Zhang, H. Karimi-Maleh, In situ synthesis of label-free electrochemical aptasensor-based sandwich-like AuNPs/PPy/Ti3C2Tx for ultrasensitive detection of lead ions as hazardous pollutants in environmental fluids. Chemosphere. 324, 138302 (2023)

    ADS  CAS  PubMed  Google Scholar 

  29. Z. Mehdizadeh, S. Shahidi, A. Ghorbani-HasanSaraei, M. Limooei, M. Bijad, Monitoring of amaranth in drinking samples using voltammetric amplified electroanalytical sensor. Chem. Methodol. 6, 246–252 (2022)

    CAS  Google Scholar 

  30. S.Z. Mohammadi, H. Beitollahi, N. Mohammad, Rahimi, Voltammetric determination of epinephrine and uric acid using modified graphene oxide nano sheets paste electrode. J. Anal. Chem. 74, 345–354 (2019)

    Google Scholar 

  31. I. Abyar, H. Asadollahzadeh, S.Z. Mohammadi, M. Shahidi, M. Ghazizadeh, Electrochemical determination of 6 tioguanine by using modifed screen printed electrode: magnetic core–shell Fe3O4@SiO2/MWCNT nanoparticles. J Iran. Chem Soc. 20, 1237–1245 (2023)

    CAS  Google Scholar 

  32. M. Bijad, H. Karimi-Maleh, M. Farsi, S.A. Shahidi, An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. J. Food Meas. Charact. 12, 634–640 (2018)

    Google Scholar 

  33. Z.G. Khan, M.R. Patil, S.N. Nangare, A.G. Patil, S.H. Boddu, R.S. Tade, P.O. Patil, Surface nanoarchitectured metal–organic frameworks-based sensor for reduced glutathione sensing: a review. J. Nanostruct. Chem. 12, 1053–1074 (2022)

    Google Scholar 

  34. S.Z. Mohammadi, H. Beitollahi, M. Kaykhaii, N. Mohammadizadeh, S. Tajik, R. Hosseinzadeh, Simultaneous determination of droxidopa and carbidopa by carbon paste electrode functionalized with NiFe2O4 nanoparticle and 2-(4-ferrocenyl-[1,2,3]triazol-1-yl)-1-(naphthalen-2-yl) ethenone. Measurement. 155, 107522 (2020)

    Google Scholar 

  35. V. Safari Fard, Y. Davoudabadi, Farahani, An amine/imine functionalized microporous MOF as a new fluorescent probe exhibiting selective sensing of Fe3+ and Al3+ over mixed metal ions. J. Appl. Organomet. Chem. 2, 165–179 (2022)

    Google Scholar 

  36. S. Ghasemi, F. Badri, H. Rahbar, Kafshboran, Pd catalyst supported thermo-responsive modified poly(N-isopropylacrylamide) grafted Fe3O4@CQD@Si in heck coupling reaction. Asian J. Green. Chem. 8, 39–56 (2024)

    CAS  Google Scholar 

  37. W. Liu, Z. Ma, Y. Wang, J. Yang, Multiple nano-drug delivery systems for intervertebral disc degeneration: current status and future perspectives. Bioact Mater. 23, 274–299 (2023)

    PubMed  Google Scholar 

  38. A.S. Rasappan, R. Palanisamy, V. Thangamuthu, M. Natarajan, D. Velauthapillai, J. Kim, Cubic-architectured tungsten sulfide@Cu-Fe bimetallic electrodes for dye-sensitized solar cells, hybrid supercapacitors, and piezoelectric nanogenerators. Nano Energy. 112, 108490 (2023)

    Google Scholar 

  39. S.Z. Mohammadi, H. Beitollahi, M. Kaykhaii, N. Mohammadizadeh, A novel electrochemical sensor based on graphene oxide nanosheets and ionic liquid binder for differential pulse voltammetric determination of droxidopa in pharmaceutical and urine samples. Rus J. Electrochem. 55, 1229–1236 (2019)

    CAS  Google Scholar 

  40. A.F. Moreira, C.F. Rodrigues, C.A. Reis, E.C. Costa, I.J. Correia, Gold-core silica shell nanoparticles application in imaging and therapy: a review. Micropor. Mesopor. Mater. 270, 168–179 (2018)

    CAS  Google Scholar 

  41. S.Z. Mohammadi, S. Tajik, H. Beitollahi, Screen printed carbon electrode modified with magnetic core shell manganese ferrite nanoparticles for electrochemical detection of amlodipine. J. Serb Chem. Soc. 84, 1005–1016 (2019)

    CAS  Google Scholar 

  42. S.Z. Mohammadi, H. Beitollahi, M. Askari, R. Hosseinzadeh, Application of a modified carbon paste electrode using core–shell magnetic nanoparticle and modifier for simultaneous determination of norepinephrine, acetaminophen and tryptophan. Rus J. Electrochem. 57, 74–84 (2021)

    Google Scholar 

  43. H. Beitollahi, F. Garkani-Nejad, S. Tajik, M.R. Ganjali, Voltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@SiO2 nanocomposite. Iran. J Pharm Res. 18, 80 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. S. Tajik, H. Beitollahi, F. Garkani Nejad, M. Safaei, P. Mohammadzadeh, Jahani, Electrochemical sensing of Sudan I using the modified graphite screen-printed electrode. Int. J. Environ. Anal. Chem. 102, 1477–1490 (2022)

    CAS  Google Scholar 

  45. V. Gargiulo, A. Policicchio, L. Lisi, M. Alfe, CO2 capture and gas storage capacities enhancement of HKUST-1 by hybridization with functionalized graphene-like materials. Energy Fuels. 37, 5291–5302 (2023)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. M. Sajjadnejad, S.M.S. Haghshenas, Metal Organic frameworks (MOFs) and their application as photocatalysts: part II. Characterization and photocatalytic behavior. Adv. J. Chem. A 6, 172–187 (2023)

    CAS  Google Scholar 

  47. R. Zhao, Y. Nie, J. Liu, Y. Wang, N. Li, Q. Cheng, M. Xia, New insight into ZnO@ ZIFs composite: an efficient photocatalyst with boosted light response ability and stability for CO2 reduction. Environ. Sci. Pollut Res. 30, 82672–82685 (2023)

    CAS  Google Scholar 

  48. X. Li, D. Yao, D. Wang, Z. He, X. Tian, Y. Xin, Y. Zheng, Amino-functionalized ZIFs-based porous liquids with low viscosity for efficient low-pressure CO2 capture and CO2/N2 separation. Chem. Eng. J. 429, 132296 (2022)

    CAS  Google Scholar 

  49. H. Guo, T. Fan, W. Yao, W. Yang, N. Wu, H. Liu, W. Yang, Simultaneous determination of 4-aminophenol and acetaminophen based on high electrochemical performance of ZIF-67/MWCNT-COOH/Nafion composite. Microchem J. 158, 105262 (2020)

    CAS  Google Scholar 

  50. H. Karimi-Maleh, Y. Liu, Z. Li, R. Darabi, Y. Orooji, C. Karaman, F. Karimi, M. Baghayeri, J. Rouhi, L. Fu, Calf thymus ds-DNA intercalation with pendimethalin herbicide at the surface of ZIF-8/Co/rGO/C3N4/ds-DNA/SPCE; a bio-sensing approach for pendimethalin quantification confirmed by molecular docking study. Chemosphere 332, 138815 (2023)

    ADS  CAS  PubMed  Google Scholar 

  51. X. Tu, X. Li, B. Liu, C. Zhai, Y. Peng, B. Wang, Z. Hu, Z. Su, X. Qin, Facile one-pot synthesis of triethanolamine-functionalized AuNPs-GO-UiO-66-NH2 nanocomposites for simultaneous electrochemical detection of cd (II), pb (II), and Cu (II). J. Solid State Electrochem. (2023). https://doi.org/10.1007/s10008-023-05697-2

    Article  Google Scholar 

  52. A.C. Power, B. Gorey, S. Chandra, J. Chapman, Carbon nanomaterials and their application to electrochemical sensors: a review. Nanotechnol Rev. 7, 19–41 (2018)

    CAS  Google Scholar 

  53. C. Zhang, J. Ren, Y. Xing, M. Cui, N. Li, P. Liu, X. Wen, M. Li, Fabrication of hollow ZnO-Co3O4 nanocomposite derived from bimetallicorganic frameworks capped with pd nanoparticles and MWCNTs for highly sensitive detection of tanshinol drug. Mater. Sci. Eng. C 108, 110214 (2020)

    CAS  Google Scholar 

  54. P. Yang, L. Yang, Q. Gao, Q. Luo, X. Zhao, X. Mai, Q. Fu, M. Dong, J. Wang, Y. Hao, Anchoring carbon nanotubes and post-hydroxylation treatment enhanced Ni nanofiber catalysts towards efficient hydrous hydrazine decomposition for effective hydrogen generation. Chem. Commun. 55, 9011–9014 (2019)

    CAS  Google Scholar 

  55. H. Karimi-Maleh, C.T. Fakude, N. Mabuba, G.M. Peleyeju, O.A. Arotiba, The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J. Colloid Interface Sci. 554, 603–610 (2019)

    ADS  CAS  PubMed  Google Scholar 

  56. M.M. Eteya, G.H. Rounaghi, B. Deiminiat, Electrochemical determination of tyramine using a carbon ionic liquid paste electrode modified with f-MWCNTs/graphene nanocomposite film. Electrocatalysis. 14, 688–696 (2023)

    CAS  Google Scholar 

  57. S. Mutić, D. Stanković, Z. Kónya, J. Anojčić, Facile immobilization of cholesterol oxidase on Pt, Ru–C nanocomposite and ionic liquid–modified carbon paste electrode for an efficient amperometric free cholesterol biosensing. Anal. Bioanal Chem. 415, 5709–5722 (2023)

    PubMed  Google Scholar 

  58. M.A. Mohamed, N.N. Salama, M.A. Sultan, H.F. Manie, M.M.A. El-Alamin, Sensitive and effective electrochemical determination of butenafine in the presence of itraconazole using titanium nanoparticles-ionic liquid based nanocomposite sensor. Chem. Papers. 77, 1929–1939 (2023)

    CAS  Google Scholar 

  59. M. Konni, S. Doddi, A.S. Dadhich, S.B. Mukkamala, Adsorption of CO2 by hierarchical structures of f-MWCNTs@Zn/Co-ZIF and N-MWCNTs@ Zn/Co-ZIF prepared through in situ growth of ZIFs in CNTs. Surf. Int. 12, 20–25 (2018)

    CAS  Google Scholar 

  60. Q. Luo, X. Huang, Q. Deng, X. Zhao, H. Liao, H. Deng, J. Jiang, Novel 3D cross-shaped Zn/Co bimetallic zeolite imidazolate frameworks for simultaneous removal cr (VI) and Congo Red. Environ. Sci. Poll. Res. 29, 40041–40052 (2022)

    CAS  Google Scholar 

  61. K. Zhou, B. Mousavi, Z. Luo, S. Phatanasri, S. Chaemchuen, F. Verpoort, Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67. J. Mater. Chem. A 5, 952–957 (2017)

    CAS  Google Scholar 

  62. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, New York, 2001), pp. 100–137

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Payame Noor University for support of this work.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by YB. The first draft of the manuscript was written by ST. The revise and editing was done by SZM. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sayed Zia Mohammadi.

Ethics declarations

Conflict of interest

There are no financial or other conflicts of interest, according to the authors. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, S.Z., Tajik, S. & Badri, Y. A voltammetric epinine sensor based on MWCNTs/ZnCo-ZIF nanocomposite and ionic liquid modified electrode. J Mater Sci: Mater Electron 35, 201 (2024). https://doi.org/10.1007/s10854-024-11926-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11926-9

Navigation