Skip to main content
Log in

Facile one-pot synthesis of triethanolamine-functionalized AuNPs-GO-UiO-66-NH2 nanocomposites for simultaneous electrochemical detection of Cd(II), Pb(II), and Cu(II)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This work provides a facile electrochemical method for simultaneous detection of Cd2+, Pb2+, and Cu2+, on the base of one-pot synthesis of triethanolamine (TEOA)-functionalized gold nanoparticle (AuNP)-metal–organic framework-graphene oxide nanocomposites (TEOA@AuNPs-GO-UiO-66-NH2). In this method, TEOA not only can act as a base for the deprotonation of 2-aminoterephthalic acid, leading to in situ synthesizing the UiO-66-NH2 on the GO nanosheets by a one-step hydrothermal method, but also can be used as a reductant reacted with HAuCl4 to form AuNPs, improving the conductivity of the composite by accelerating the electron transfer. Moreover, this composite can serve as an enrichment medium phase of heavy metal ions because of the interaction between metal cations and hydrophilic groups of TEOA, UiO-66-NH2, or GO, which have the synergic effect of enhancing the electrochemical signals. The morphology and structure information of TEOA@AuNPs-GO-UiO-66-NH2 composite were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectrometer (FT-IR). Under the optimal conditions, the TEOA@AuNPs-GO-UiO-66-NH2-modified electrode was applied for individual and simultaneous electrochemical detection for the Cd2+, Pb2+, and Cu2+ in an acetic acid buffer solution with satisfactory linear range and significantly low limits of detection. This electrochemical sensor was successfully utilized for simultaneous detection of Cd2+, Pb2+, and Cu2+ in river water with great selectivity and accuracy, displaying great potential application in food safety and environmental monitoring.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ma L, Wang Q, Islam SM, Liu Y, Ma S, Kanatzidis MG (2016) Highly selective and efficient removal of heavy metals by layered double hydroxide intercalated with the MoS4(2-) ion. J Am Chem Soc 138:2858–2866

    Article  CAS  PubMed  Google Scholar 

  2. Wu Y, Song Q, Wu J, Zhou J, Zhou L, Wu W (2021) Field study on the soil bacterial associations to combined contamination with heavy metals and organic contaminants. Sci Total Environ 778:146282

    Article  CAS  PubMed  Google Scholar 

  3. Cheng B, Zhou L, Lu L, Liu J, Dong X, Xi F, Chen P (2018) Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels. Sens Actuators, B 259:364–371

    Article  CAS  Google Scholar 

  4. Patel M, Bisht N, Prabhakar P, Sen RK, Kumar P, Dwivedi N, Ashiq M, Mondal DP, Srivastava AK, Dhand C (2023) Ternary nanocomposite-based smart sensor: Reduced graphene oxide/polydopamine/alanine nanocomposite for simultaneous electrochemical detection of Cd(2+), Pb(2+), Fe(2+), and Cu(2+) ions. Environ Res 221:115317

    Article  CAS  PubMed  Google Scholar 

  5. Fu J, Zhou Q, Liu J, Liu W, Wang T, Zhang Q, Jiang G (2008) High levels of heavy metals in rice ( Oryza sativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health. Chemosphere 71:1269–1275

    Article  CAS  PubMed  Google Scholar 

  6. Hu X, Zhang Y, Luo J, Wang T, Lian H, Ding Z (2011) Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environ Pollut 159:1215–1221

    Article  CAS  PubMed  Google Scholar 

  7. Zhao F, Ma Y, Zhu Y, Tang Z, P MS, (2015) Soil contamination in China: current status and mitigation strategies. Environ Sci Technol 49:1206–1214

    Google Scholar 

  8. Cheng K, Wang Y, Tian H, Gao X, Zhang Y, Wu X, Zhu C, Gao J (2015) Atmospheric emission characteristics and control policies of five precedent-controlled toxic heavy metals from anthropogenic sources in China. Environ Sci Technol 49:750–759

    Article  Google Scholar 

  9. Ma Q, Yao L, Guo Q, Zhou G, Liang R, Fang Q, Xu Z, Zhao X (2021) Long-term impact of accidental pollution on the distribution and risks of metals and metalloids in the sediment of the Longjiang River, China. Environ Sci Pollut Res Int 28:1889–1900

    Article  CAS  PubMed  Google Scholar 

  10. Munir A, Shah A, Nisar J, Ashiq MN, Akhter MS, Shah AH (2019) Selective and simultaneous detection of Zn2+, Cd2+, Pb2+, Cu2+, Hg2+ and Sr2+ using surfactant modified electrochemical sensors. Electrochim Acta 323:134592

    Article  CAS  Google Scholar 

  11. Liu C, Bi X, Zhang A, Qi B, Yan S (2020) Preparation of an L-cysteine functionalized magnetic nanosorbent for the sensitive quantification of heavy metal ions in food by graphite furnace atomic absorption spectrometry. Anal Lett 53:2079–2095

    Article  CAS  Google Scholar 

  12. Qiu J, Zeng D, Lin Y, Ye W, Chen C, Xu Z, Hu G, Liu Y (2023) Carbon-polymer dot-based UV absorption and fluorescence performances for heavy metal ion detection. Spectrochim Acta, Part A 285:121913

    Article  CAS  Google Scholar 

  13. Wu M, Yang B, Shi L, Tang Q, Wang J, Liu W, Li B, Jin Y (2023) Peroxidase-mimicking DNAzymes as receptors for label-free discriminating heavy metal ions by chemiluminescence sensor arrays. Anal Chem 95:3486–3492

    Article  CAS  PubMed  Google Scholar 

  14. Zhao N, Bian Y, Dong X, Gao X, Zhao L (2021) Magnetic solid-phase extraction based on multi-walled carbon nanotubes combined ferroferric oxide nanoparticles for the determination of five heavy metal ions in water samples by inductively coupled plasma mass spectrometry. Water Sci Technol 84:1417–1427

    Article  CAS  PubMed  Google Scholar 

  15. Shen Y, Rong M, Qu X, Zhao B, Zou J, Liu Z, Bao Y, He Y, Li S, Wang X, Chen M, Chen K, Zhang Y, Niu L (2022) Graphene oxide-assisted synthesis of N, S Co-doped carbon quantum dots for fluorescence detection of multiple heavy metal ions. Talanta 241:123224

    Article  CAS  PubMed  Google Scholar 

  16. Zare H, Ghalkhani M, Akhavan O, Taghavinia N, Marandi M (2017) Highly sensitive selective sensing of nickel ions using repeatable fluorescence quenching-emerging of the CdTe quantum dots. Mater Res Bull 95:532–538

    Article  CAS  Google Scholar 

  17. Chen Z, Xie M, Zhao F, Han S (2022) Application of nanomaterial modified aptamer-based electrochemical sensor in detection of heavy metal ions. Foods 11:1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu L, Sun L, Zhang Q, Zhou Y, Zhang J, Yang B, Xu B, Xu Q (2022) Nanomaterials-based ion-imprinted electrochemical sensors for heavy metal ions detection: a review. Biosensors (Basel) 12:1096

    Article  CAS  PubMed  Google Scholar 

  19. Jiang D, Sheng K, Gui G, Jiang H, Liu X, Wang L (2021) A novel smartphone-based electrochemical cell sensor for evaluating the toxicity of heavy metal ions Cd(2+), Hg(2+), and Pb(2+) in rice. Anal Bioanal Chem 413:4277–4287

    Article  CAS  PubMed  Google Scholar 

  20. Meskher H, Mustansar HC, Thakur AK, Sathyamurthy R, Lynch I, Singh P, Han TK, Saidur R (2023) Recent trends in carbon nanotube (CNT)-based biosensors for the fast and sensitive detection of human viruses: a critical review. Nanoscale Adv 5:992–1010

    Article  CAS  PubMed  Google Scholar 

  21. Lu M, Deng Y, Luo Y, Lv J, Li T, Xu J, Chen SW, Wang J (2019) Graphene aerogel-metal-organic framework-based electrochemical method for simultaneous detection of multiple heavy-metal ions. Anal Chem 91:888–895

    Article  CAS  PubMed  Google Scholar 

  22. Wang B, Chen J, Tong H, Huang Y, Liu B, Yang X, Su Z, Tu X, Qin X (2023) Simultaneous electrochemical detection of Cd (II) and Pb (II) based on L-cysteine functionalized gold nanoparticles/metal-organic frameworks-graphene oxide nanocomposites. J Electroanal Chem 943:117573

    Article  CAS  Google Scholar 

  23. Ru J, Wang X, Zhou Z, Zhao J, Yang J, Du X, Lu X (2022) Fabrication of octahedral GO/UiO-67@PtNPs nanocomposites as an electrochemical sensor for ultrasensitive recognition of arsenic (III) in Chinese Herbal Medicine. Anal Chim Acta 1195:339451

    Article  CAS  PubMed  Google Scholar 

  24. Yang Q, Sun X, Sun Y, Shen X, Pang Y (2023) Bismuth metal–organic framework/carbon nanosphere composites for ultrasensitive simultaneous electrochemical detection of lead and cadmium. ACS Appl Nano Mater 6(9):7901–7909

    Article  CAS  Google Scholar 

  25. Zhang Z, Karimi-Maleh H, Wen Y, Darabi R, Wu T, Alostani P, Ghalkhani M (2023) Nanohybrid of antimonene@Ti3C2Tx-based electrochemical aptasensor for lead detection. Environ Res 233:116355

    Article  CAS  PubMed  Google Scholar 

  26. Ghalkhani M, Ghelichkhania F, Ghorbani-Bidkorbeh F (2018) Study and optimization of the necessary conditions for the sensitive determination of the lead ion by a modified carbon paste electrode in environmental water samples. Iran J Pharm Res 17(Suppl2):44–53

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jose J, Prakash P, Jeyaprabha B, Abraham R, Mathew RM, Zacharia ES, Thomas V, Thomas J (2023) Principle, design, strategies, and future perspectives of heavy metal ion detection using carbon nanomaterial-based electrochemical sensors: a review. J Iran Chem Soc 20:775–791

    Article  Google Scholar 

  28. Kulkarni BB, Suvina V, Balakrishna RG, Nagaraju DH, Jagadish K (2022) 1D GNR-PPy composite for remarkably sensitive detection of heavy metal ions in environmental Water. ChemElectroChem 9:e202101269

    Article  CAS  Google Scholar 

  29. Mohan B, Neeraj V, Kadiyan R, Singh K, Singh G, Kumar K, Sharma HK, Pombeiro AJL (2023) MOFs composite materials for Pb2+ ions detection in water: recent trends & advances. Microchem J 190:108585

    Article  CAS  Google Scholar 

  30. Devaraj M, Sasikumar Y, Rajendran S, Ponce LC (2021) Review—metal organic framework based nanomaterials for electrochemical sensing of toxic heavy metal ions: progress and their prospects. J Electrochem Soc 168:037513

    Article  CAS  Google Scholar 

  31. Han K, Chen L, Zhang W, Tong Y, Shi J, Su X, Zou X (2023) A ratiometric electrochemical sensor for detecting lead in fish based on the synergy of semi-complementary aptamer pairs and Ag nanowires@zeolitic imidazolate framework-8. Anal Methods 15:2199–2209

    Article  CAS  PubMed  Google Scholar 

  32. Mohit C, Shilpi V, Ashwini K, Y.B. B, Pratibha T, Sandeep S, K. CS, Pushpendra K, P. SS, (2021) Graphene oxide based electrochemical immunosensor for rapid detection of groundnut bud necrosis orthotospovirus in agricultural crops. Talanta 235:122717

    Article  Google Scholar 

  33. Meskher H, Achi F, Ben Moussa F, Henni A, Belkhelfa H (2023) A novel pentachlorophenol electrochemical sensor based on nickel-cobalt layered double hydroxide doped with reduced graphene oxide composite. ECS Adv 2:016503

    Article  Google Scholar 

  34. Meskher H, Belhaouari SB, Deshmukh K, Hussain CM, Sharifianjazi F (2023) A magnetite composite of molecularly imprinted polymer and reduced graphene oxide for sensitive and selective electrochemical detection of catechol in water and milk samples: an artificial neural network (ANN) application. J Electrochem Soc 170:047502

    Article  CAS  Google Scholar 

  35. Urbanová V, Bakandritsos A, Jakubec P, Szambó T, Zbořil R (2017) A facile graphene oxide based sensor for electrochemical detection of neonicotinoids. Biosens Bioelectron 89:532–537

    Article  PubMed  Google Scholar 

  36. Shafqat SS, Rizwan M, Batool M, Shafqat SR, Mustafa G, Rasheed T, Zafar MN (2023) Metal organic frameworks as promising sensing tools for electrochemical detection of persistent heavy metal ions from water matrices: a concise review. Chemosphere 318:137920

    Article  CAS  PubMed  Google Scholar 

  37. Zuliani A, Khiar N, Carrillo-Carrion C (2023) Recent progress of metal-organic frameworks as sensors in (bio)analytical fields: towards real-world applications. Anal Bioanal Chem 415:2005–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li Y, Si Y, Yang G, Yang L, Wang H (2023) Rational design of a functionalized metal-organic framework for ratiometric fluorimetric sensing of Hg(2+) in environmental water. Anal Methods 15:2599–2605

    Article  CAS  PubMed  Google Scholar 

  39. Wang X, Qi Y, Shen Y, Yuan Y, Zhang L, Zhang C, Sun Y (2020) A ratiometric electrochemical sensor for simultaneous detection of multiple heavy metal ions based on ferrocene-functionalized metal-organic framework. Sens Actuators B 310:127756

    Article  CAS  Google Scholar 

  40. Meskher H, Achi F, Ha S, Berregui B, Babanini F, Belkhalfa H (2022) Sensitive rGO/MOF based electrochemical sensor for penta-chlorophenol detection: a novel artificial neural network (ANN) application. Sens Diagn 1:1032–1043

    Article  CAS  Google Scholar 

  41. Ying Q, Hao Y, Wang Z, Li X (2019) Facile one-step preparation of triethanolamine modified magnetic nanoparticles for the high-efficient removal of Cu (II) ions and methylene blue. J Taiwan Inst Chem Eng 95:32–39

    Article  CAS  Google Scholar 

  42. Qin X, Gu C, Wang M, Dong Y, Nie X, Li M, Zhu Z, Yang D, Shao Y (2018) Triethanolamine-modified gold nanoparticles synthesized by a one-pot method and their application in electrochemiluminescent immunoassy. Anal Chem 90:2826–2832

    Article  CAS  PubMed  Google Scholar 

  43. Qin X, Dong Y, Wang M, Zhu Z, Li M, Yang D, Shao Y (2019) In situ growing triethanolamine-functionalized metal-organic frameworks on two-dimensional carbon nanosheets for electrochemiluminescent immunoassay. ACS Sens 4:2351–2357

    Article  CAS  PubMed  Google Scholar 

  44. Xie Z, Su Q, Shi A, Yang B, Liu B, Chen J, Zhou X, Cai D, Yang L (2016) High performance of zinc-ferrum redox flow battery with Ac−/HAc buffer solution. J Energy Chem 25:495–499

    Article  Google Scholar 

  45. Pedrozo-Peñafiel MJ, Almeida JMS, Toloza CAT, Larrudé DG, Pacheco WF, Aucelio RQ (2019) Square-wave voltammetric determination of primaquine in urine using a multi-walled carbon nanotube modified electrode. Microchem J 150:104201

    Article  Google Scholar 

  46. Ka D, Jang S, Kim M-K, Jung H, Lee J, Jung H, Jin Y (2021) UiO-66-NH2/graphene oxide nanocomposites as reactive adsorbents for soman upon long-term exposure to high-humidity environment. Mater Lett 285:129105

    Article  CAS  Google Scholar 

  47. Jia M, Feng Y, Qiu J, Zhang X-F, Yao J (2019) Amine-functionalized MOFs@GO as filler in mixed matrix membrane for selective CO2 separation. Sep Purif Technol 213:63–69

    Article  CAS  Google Scholar 

  48. Staroszczyk H, Sztuka K, Wolska J, Wojtasz-Pajak A, Kolodziejska I (2014) Interactions of fish gelatin and chitosan in uncrosslinked and crosslinked with EDC films: FT-IR study. Spectroc Acta Pt A-Molec Biomolec Spectr 117:707–712

    Article  CAS  Google Scholar 

  49. Dang YT, Dang MHD, Mai NXD, Nguyen LHT, Phan TB, Le HV, Doan TLH (2020) Room temperature synthesis of biocompatible nano Zn-MOF for the rapid and selective adsorption of curcumin. J Sci 5:560–565

    CAS  Google Scholar 

  50. Kim M, Park J, Park H, Jo W, Lee W, Park J (2023) Detection of heavy metals in water environment using nafion-blanketed bismuth nanoplates. ACS Sustain Chem Eng 11:6844–6855

    Article  CAS  Google Scholar 

  51. Lu ZW, Zhao WY, Wu L, He J, Dai WL, Zhou CL, Du HJ, Ye JS (2021) Tunable electrochemical of electrosynthesized layer-by-layer multilayer films based on multi-walled carbon nanotubes and metal-organic framework as high-performance electrochemical sensor for simultaneous determination cadmium and lead. Sens Actuator B-Chem 326:128957

    Article  CAS  Google Scholar 

  52. Liang Q, Xiao W, Zhang C, Zhu D, Wang SL, Tian SY, Long T, Yue EL, Wang JJ, Hou XY (2023) MOFs-based Fe@YAU-101/GCE electrochemical sensor platform for highly selective detecting trace multiplex heavy metal ions. Talanta 259:124491

    Article  CAS  PubMed  Google Scholar 

  53. Ren HS, Cao ZF, Wen X, Wang S, Zhong H, Wu ZK (2019) Preparation of a novel nano-Fe(3)O(4)/triethanolamine/GO composites to enhance Pb(2+)/Cu(2+) ions removal. Environ Sci Pollut Res Int 26:10174–10187

    Article  CAS  PubMed  Google Scholar 

  54. Koteja A, Matusik J (2015) Di- and triethanolamine grafted kaolinites of different structural order as adsorbents of heavy metals. J Colloid Interface Sci 455:83–92

    Article  CAS  PubMed  Google Scholar 

  55. Huang JH, Yuan F, Zeng GM, Li X, Gu YL, Shi LX, Liu WC, Shi YH (2017) Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration. Chemosphere 173:199–206

    Article  CAS  PubMed  Google Scholar 

  56. Ru J, Wang XM, Cui XL, Wang FB, Ji H, Du XZ, Lu XQ (2021) GaOOH-modified metal-organic frameworks UiO-66-NH2: Selective and sensitive sensing four heavy-metal ions in real wastewater by electrochemical method. Talanta 234:122679

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (22004034), Foundation of key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle (ES202180064), Natural Science Foundation of Hunan Province (China) (2020JJ5226), and Science Foundation of Hunan Agricultural University (540499818007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Qin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1515 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, X., Li, X., Liu, B. et al. Facile one-pot synthesis of triethanolamine-functionalized AuNPs-GO-UiO-66-NH2 nanocomposites for simultaneous electrochemical detection of Cd(II), Pb(II), and Cu(II). J Solid State Electrochem 28, 433–444 (2024). https://doi.org/10.1007/s10008-023-05697-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05697-2

Keywords

Navigation