Skip to main content
Log in

Interfacial microstructure, shear strength and wettability of Ni-added Sn-0.3Ag-0.7Cu/Cu solder joint

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study investigates the effect of Ni additions of 0.05 and 0.1 wt% on the properties of SAC0307/Cu solder joints. The interfacial microstructure, wettability, shear strength and fracture behavior of reflow specimens were examined. At the interface of the solder joint, added Ni suppressed the formation of a Cu3Sn IMC layer and changed a Cu6Sn5 IMC layer to a (Cu,Ni)6Sn5 IMC layer. The thickness of the interfacial IMC layer at the solder joint increased with the addition of Ni to the solder alloy. With increments of Ni content, the spreading area of the SAC0307/Cu joint increased while the contact angle decreased, thus improving the wettability of the joint. Moreover, the addition of Ni had a clear impact on the shear properties of the solder joint. Shear strength gradually increased with increments in Ni concentration and changed the shear fracture behavior from a ductile mode to a mixture of ductile and brittle modes. Therefore, the addition of a small amount of Ni to the SAC0307/Cu solder alloy improved the interfacial IMC layer formed at the solder joint. The wettability of the liquid solder on the Cu substrate and the shear strength of the joint also improved when Ni was added to the solder alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data and materials that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S.K. Kang, D.Y. Shih, N.Y. Donald, W. Henderson, T. Gosselin, A. Sarkhel, N.Y.C. Goldsmith, K.J. Puttlitz, W.K. Choi, JOM 55, 61–65 (2003). https://doi.org/10.1007/s11837-003-0143-6

    Article  CAS  Google Scholar 

  2. D.W. Henderson, T. Gosselin, A. Sarkhel, S.K. Kang, W.K. Choi, D.Y. Shih, C. Goldsmith, K.J. Puttlitz, J. Mater. Res. 17, 2775–2778 (2002). https://doi.org/10.1557/JMR.2002.0402

    Article  CAS  Google Scholar 

  3. F. Cheng, F. Gao, J. Zhang, W. Jin, X. Xiao, J. Mater. Sci. 46, 3424–3429 (2011). https://doi.org/10.1007/s10853-010-5231-8

    Article  CAS  Google Scholar 

  4. K. Kanlayasiri, K. Sukpimai, J. Alloy. Compd. 668, 169–175 (2016). https://doi.org/10.1016/j.jallcom.2016.01.231

    Article  CAS  Google Scholar 

  5. A. Skwarek, B. Illés, P. Górecki, A. Pietruszka, J. Tarasiuk, T. Hurtony, J. Mater. Res. Technol. JMRT 22, 403–412 (2023). https://doi.org/10.1016/j.jmrt.2022.11.126

    Article  CAS  Google Scholar 

  6. D.A. Shnawah, S.B.M. Said, M.F.M. Sabri, I.A. Badruddin, F.X. Che, J. Electron. Mater. 41, 2631–2658 (2012). https://doi.org/10.1007/s11664-012-2145-z

    Article  CAS  Google Scholar 

  7. K. Kanlayasiri, T. Ariga, J. Alloys Compd. 504, 5–9 (2010). https://doi.org/10.1016/j.jallcom.2010.05.057

    Article  CAS  Google Scholar 

  8. F.X. Che, W.H. Zhu, E.S.W. Poh, X.W. Zhang, X.R. Zhang, J. Alloys Compd. 507, 215–224 (2010). https://doi.org/10.1016/j.jallcom.2010.07.160

    Article  CAS  Google Scholar 

  9. A.E. Ahmmad, Mater. Des. 52, 663–670 (2013). https://doi.org/10.1016/j.matdes.2013.05.102

    Article  CAS  Google Scholar 

  10. A.A. El-Daly, A.E. Hammad, A. Fawzy, D.A. Nasrallh, Mater. Des. 43, 40–49 (2013). https://doi.org/10.1016/j.matdes.2012.06.058

    Article  CAS  Google Scholar 

  11. M.H. Mahdavifard, M.F.M. Sabri, S.M. Said, S. Rozali, Microelectron. Eng. 208, 29–38 (2019). https://doi.org/10.1016/j.mee.2019.01.011

    Article  CAS  Google Scholar 

  12. Y. Chen, Z.C. Meng, L.Y. Gao, Z.Q. Liu, J. Mater. Sci. Mater. Electron. 32, 2172–2186 (2021). https://doi.org/10.1007/s10854-020-04982-4

    Article  CAS  Google Scholar 

  13. L. Yin, Z. Zhang, Z. Su, H. Zhang, C. Zuo, Z. Yao, G. Wang, L. Zhang, Y. Zhang, Mater. Sci. Eng. A 809, 140995 (2021). https://doi.org/10.1016/j.msea.2021.140995

    Article  CAS  Google Scholar 

  14. Y. Tang, Q.W. Guo, S.M. Luo, Z.H. Li, G.Y. Li, C.J. Hou, Z.Y. Zhong, J.J. Zhuang, J. Alloys Compd. 778, 741–755 (2019). https://doi.org/10.1016/j.jallcom.2018.11.156

    Article  CAS  Google Scholar 

  15. J. Wu, S.B. Xue, G.Q. Huang, H.B. Sun, F.F. Chi, X.L. Yang, Y. Xu, J. Alloys Compd. 905, 164152 (2022). https://doi.org/10.1016/j.jallcom.2022.164152

    Article  CAS  Google Scholar 

  16. S. Tikale, K.N. Prabhu, Mater. Sci. Eng. A 787, 139439 (2020). https://doi.org/10.1016/j.msea.2020.139439

    Article  CAS  Google Scholar 

  17. G. Zeng, S.D. McDonald, Q. Gu, Y. Terada, K. Uesugi, H. Yasuda, K. Nogita, Acta Mater. 83, 357–371 (2015). https://doi.org/10.1016/j.actamat.2014.10.003

    Article  CAS  Google Scholar 

  18. Y. Lai, X. Hu, X. Jiang, Y. Li, J. Mater. Eng. Perform. 27, 6564–6576 (2018). https://doi.org/10.1007/s11665-018-3734-7

    Article  CAS  Google Scholar 

  19. X. Hu, T. Xu, L.M. Keer, Y. Li, X. Jiang, Mater. Sci. Eng. A 673, 167–177 (2016). https://doi.org/10.1016/j.msea.2016.07.071

    Article  CAS  Google Scholar 

  20. Z. Zhang, X. Hu, X. Jiang, Y. Li, Metall. Mater. Trans. A 50, 480–492 (2019). https://doi.org/10.1007/s11661-018-4983-7

    Article  CAS  Google Scholar 

  21. P. Fima, T. Gancarz, J. Pstrus, A. Sypien, J. Mater. Eng. Perform. 21, 595–598 (2012). https://doi.org/10.1007/s11665-012-0124-4

    Article  CAS  Google Scholar 

  22. X. Chen, F. Xue, J. Zhou, Y. Yao, J. Alloys Compd. 633, 377–383 (2015). https://doi.org/10.1016/j.jallcom.2015.01.219

    Article  CAS  Google Scholar 

  23. J.W. Yoon, Y.H. Lee, D.G. Kim, H.B. Kang, S.J. Suh, C.W. Yang, C.B. Lee, J.M. Jung, C.S. Yoo, S.B. Jung, J. Alloys Compd. 381, 151–157 (2004). https://doi.org/10.1016/j.jallcom.2004.03.076

    Article  CAS  Google Scholar 

  24. T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. R 49, 1–60 (2005). https://doi.org/10.1016/j.mser.2005.03.001

    Article  CAS  Google Scholar 

  25. M.J. Rizvi, C. Bailey, Y.C. Chan, M.N. Islam, H. Lu, J. Alloys Compd. 438, 122–128 (2007). https://doi.org/10.1016/j.jallcom.2006.08.071

    Article  CAS  Google Scholar 

  26. J.W. Yoon, B.I. Noh, B.K. Kim, C.C. Shur, S.B. Jung, J. Alloys Compd. 486, 142–147 (2009). https://doi.org/10.1016/j.jallcom.2009.06.159

    Article  CAS  Google Scholar 

  27. F. Gao, T. Takemoto, H. Nishikawa, Mater. Sci. Eng. A 420, 39–46 (2006). https://doi.org/10.1016/j.msea.2006.01.032

    Article  CAS  Google Scholar 

  28. Y. Lai, X. Hu, Y. Li, X. Jiang, J. Mater. Sci. Mater. Electron. 29, 11314–11324 (2018). https://doi.org/10.1007/s10854-018-9219-5

    Article  CAS  Google Scholar 

  29. C. Yang, F. Song, S.W. Ricky Lee, Microelectron. Reliab. 54, 435–446 (2014). https://doi.org/10.1016/j.microrel.2013.10.005

    Article  CAS  Google Scholar 

  30. Y.H. Lee, H.T. Lee, Mater. Sci. Eng. A 444, 75–83 (2007). https://doi.org/10.1016/j.msea.2006.08.065

    Article  CAS  Google Scholar 

  31. Y. Wang, G. Wang, K. Song, K. Zhang, Mater. Des. 119, 219–224 (2017). https://doi.org/10.1016/j.matdes.2017.01.046

    Article  CAS  Google Scholar 

  32. L. Zang, Z. Yuan, H. Xu, B. Xu, Appl. Surf. Sci. 257, 4877–4884 (2011). https://doi.org/10.1016/j.apsusc.2010.12.131

    Article  CAS  Google Scholar 

  33. P. Borgesen, L. Yin, P. Kondos, Microelectron. Reliab. 52, 1121–1127 (2012). https://doi.org/10.1016/j.microrel.2011.12.005

    Article  CAS  Google Scholar 

  34. Y.W. Wang, Y.W. Lin, C.R. Kao, Microelectron. Reliab. 49, 248–252 (2009). https://doi.org/10.1016/j.microrel.2008.09.010

    Article  CAS  Google Scholar 

  35. H. Wang, X. Hu, X. Jiang, Mater Charact 163, 110287 (2020). https://doi.org/10.1016/j.matchar.2020.110287

    Article  CAS  Google Scholar 

  36. X. Bi, X. Hu, Q. Li, Mater. Sci. Eng. A 788, 139589 (2020). https://doi.org/10.1016/j.msea.2020.139589

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science, Research and Innovation Fund (NSRF), and Prince of Songkla University (Ref. No. SCI6701304S). T.Y. received a scholarship from the Faculty of Science Research Fund, Prince of Songkla University (Contract no. 1-2565-02-008). The authors wish to thank academician Thomas Duncan Coyne for improving the English in this paper.

Funding

This work was supported by the National Science, Research and Innovation Fund (NSRF) and Prince of Songkla University (Ref. No. SCI6701304S).

Author information

Authors and Affiliations

Authors

Contributions

TY: Methodology, Investigation, Visualization. SC: Methodology, Data Curation, Software. PS: Conceptualization, Resources, Data Curation, Validation, Writing—Original Draft, Writing—Review and Editing.

Corresponding author

Correspondence to Phairote Sungkhaphaitoon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving in human and animal participants

The work reported in this article did not involve studies of humans or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yordeiad, T., Chantaramanee, S. & Sungkhaphaitoon, P. Interfacial microstructure, shear strength and wettability of Ni-added Sn-0.3Ag-0.7Cu/Cu solder joint. J Mater Sci: Mater Electron 35, 85 (2024). https://doi.org/10.1007/s10854-023-11911-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11911-8

Navigation