Skip to main content
Log in

Tin nanoparticle-modified electrode for the simultaneous detection of cadmium (Cd) and lead (Pb) ions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Heavy metals are toxic and persistent in the environment and can accumulate in the food chain and potential health hazards to humans and other living organisms. Exposure to heavy metals can cause a range of health effects, including neurological damage, developmental and reproductive problems, and increased risk of certain types of cancer. Thus, monitoring the levels of heavy metal ions in the environment is essential. In these studies, tin nanoparticles (SnNPs) were synthesized using the chemical reduction method to modify the electrode surface on an indium tin oxide (ITO) electrode for heavy metal detection. Two approaches were used in synthesis of SnNPs: one with the presence of polyvinylpyrrolidone (PVP) polymers, namely, SnNP WPVP and the other was performed without a PVP polymer, namely, SnNP WOPVP. The modified electrode was subjected to cyclic voltammetry and square wave anodic stripping voltammetry. The electrode modified with Nafion/100 × SnNP WPVP/ITO showed good performance in the simultaneous detection of Cd2+ and Pb2+ ions and had a linear range of 10–100 ppb, and the low limits of detection for the simultaneous detection of Cd2+ and Pb2+ ions were 1.44 and 1.97 ppb, respectively. The sensitivity of the Nafion/100 × SnNP WPVP/ITO–modified electrode was 0.25 and 0.20 μA/ppb toward Cd2+ and Pb2+ ions, respectively. In the interference study, the modified electrode showed high selectivity towards Cd2+ and Pb2+ ions. The feasibility of using the modified electrode in detecting Cd2+ and Pb2+ ions was tested in a seawater sample. The successful detection of Pb2+ in seawater demonstrated the potential of the modified electrode as a heavy metal ions sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. G.A. Engwa et al., Mechanism and health effects of heavy metal toxicity in humans (Intech open access, London, 2019), p.13

    Google Scholar 

  2. M. Sebastian, B. Mathew, Ion imprinting approach for the fabrication of an electrochemical sensor and sorbent for lead ions in real samples using modified multiwalled carbon nanotubes. J. Mater. Sci. 53(5), 3557–3572 (2018)

    CAS  Google Scholar 

  3. P.B. Tchounwou et al., Molecular, clinical and environmental toxicicology volume 3: environmental toxicology. Mol. Clin. Environ. Toxicol. 101, 133–164 (2012)

    Google Scholar 

  4. H.L. Byers, L.J. McHenry, T.J. Grundl, XRF techniques to quantify heavy metals in vegetables at low detection limits. Food Chem.: X (2019). https://doi.org/10.1016/j.fochx.2018.100001

    Article  Google Scholar 

  5. M. Ahmed et al., Microwave assisted digestion followed by ICP-MS for determination of trace metals in atmospheric and lake ecosystem. J. Environ. Sci. (China) 55, 1–10 (2017)

    CAS  Google Scholar 

  6. S. Hassanpoor et al., Ultra-trace determination of arsenic species in environmental waters, food and biological samples using a modified aluminum oxide nanoparticle sorbent and AAS detection after multivariate optimization. Microchim. Acta (2015). https://doi.org/10.1007/s00604-015-1532-6

    Article  Google Scholar 

  7. P. Kumar et al., Progress in the sensing techniques for heavy metal ions using nanomaterials. J. Indust. Eng. Chem. 54, 30–43 (2017)

    CAS  Google Scholar 

  8. M. Miyake, Electrochemical functions. Carbon alloys: novel concepts to develop carbon science and technology (Elsevier, Amsterdam, 2003)

    Google Scholar 

  9. M. Ghalkhani, M. Salehi, Electrochemical sensor based on multi-walled carbon nanotubes–boehmite nanoparticle composite modified electrode. J. Mater. Sci. 52(20), 12390–12400 (2017)

    CAS  Google Scholar 

  10. J. Barón-Jaimez, M.R. Joya, J. Barba-Ortega, Anodic stripping voltammetry - ASV for determination of heavy metals. J. Phys.: Conf. Ser. (2013). https://doi.org/10.1088/1742-6596/466/1/012023

    Article  Google Scholar 

  11. K. Xu et al., Anodic stripping voltammetry with the hanging mercury drop electrode for trace metal detection in soil samples. Chemosensors 9(5), 107 (2021)

    Google Scholar 

  12. L. Zhou, W. Xiong, S. Liu, Preparation of a gold electrode modified with Au–TiO2 nanoparticles as an electrochemical sensor for the detection of mercury(II) ions. J. Mater. Sci. 50(2), 769–776 (2015)

    CAS  Google Scholar 

  13. N. Serrano et al., Coating methods, modifiers and applications of bismuth screen-printed electrodes. TrAC, Trends Anal. Chem. 46, 15–29 (2013)

    CAS  Google Scholar 

  14. E.C. Okpara et al., Electrochemical detection of selected heavy metals in water: a case study of African experiences. RSC Adv. 12(40), 26319–26361 (2022)

    CAS  Google Scholar 

  15. H. Yang et al., Reliable synthesis of bismuth nanoparticles for heavy metal detection. Mater. Res. Bull. 48(11), 4718–4722 (2013)

    CAS  Google Scholar 

  16. Y. He et al., Synthesis of bismuth nanoparticle-loaded cobalt ferrite for electrochemical detection of heavy metal ions. RSC Adv. 10(46), 27697–27705 (2020)

    CAS  Google Scholar 

  17. S. Palisoc, R.I.M. Vitto, M. Natividad, Determination of heavy metals in herbal food supplements using bismuth/multi-walled carbon nanotubes/nafion modified graphite electrodes sourced from waste batteries. Sci. Rep. 9(1), 18491 (2019)

    CAS  Google Scholar 

  18. B. Wang et al., Simultaneous electrochemical detection of Cd (II) and Pb (II) based on l-cysteine functionalized gold nanoparticles/metal-organic frameworks-graphene oxide nanocomposites. J. Electroanal. Chem. 943, 117573 (2023)

    CAS  Google Scholar 

  19. T. Priya et al., Ultra sensitive electrochemical detection of Cd2+ and Pb2+ using penetrable nature of graphene/gold nanoparticles/modified l-cysteine nanocomposite. Chem. Phys. Lett. 731, 136621 (2019)

    CAS  Google Scholar 

  20. I. Ivanišević, The role of silver nanoparticles in electrochemical sensors for aquatic environmental analysis. Sensors (2023). https://doi.org/10.3390/s23073692

    Article  Google Scholar 

  21. A.V. Pawar et al., MemSens: a new detection method for heavy metals based on silver nanoparticle assisted memristive switching principle. J. Mater. Sci.: Mater. Electron. 30(12), 11383–11394 (2019)

    CAS  Google Scholar 

  22. T.L. Nguyen et al., Platinum nanoflower-modified electrode as a sensitive sensor for simultaneous detection of lead and cadmium at trace levels. J. Chem. 2019, 6235479 (2019)

    Google Scholar 

  23. M.G. Trachioti, J. Hrbac, M.I. Prodromidis, Determination of Cd and Zn with “green” screen-printed electrodes modified with instantly prepared sparked tin nanoparticles. Sens. Actuat. B Chem. 260, 1076–1083 (2018)

    CAS  Google Scholar 

  24. Y.Q. Tian, N.B. Li, H.Q. Luo, Simultaneous determination of trace zinc(II) and cadmium(II) by differential pulse anodic stripping voltammetry using a MWCNTs-NaDBS modified stannum film electrode. Electroanalysis 21(23), 2584–2589 (2009)

    CAS  Google Scholar 

  25. M. Finšgar, B. Petovar, K. Vodopivec, Bismuth-tin-film electrodes for Zn(II), Cd(II), and Pb(II) trace analysis. Microchem. J. 145, 676–685 (2019)

    Google Scholar 

  26. C. Kokkinos, A. Economou, D. Giokas, Paper-based device with a sputtered tin-film electrode for the voltammetric determination of Cd(II) and Zn(II). Sens. Actuat. B: Chem. (2018). https://doi.org/10.1016/j.snb.2017.12.182

    Article  Google Scholar 

  27. A.T. Singh et al., Paper-based sensors: emerging themes and applications. Sensors (Switzerland) 18(9), 1–22 (2018)

    Google Scholar 

  28. S.W. Tong, K.P. Loh, Graphene properties and application, in Comprehensive hard materials. ed. by V.K. Sarin (Elsevier, Oxford, 2014), pp.565–583

    Google Scholar 

  29. S.S. Chee, J.H. Lee, Synthesis of tin nanoparticles through modified polyol process and effects of centrifuging and drying on nanoparticles. Trans. Nonferrous Met. Soc. China (English Edition) (2012). https://doi.org/10.1016/S1003-6326(12)61791-9

    Article  Google Scholar 

  30. D. Vollath, Agglomerates of nanoparticles. Beilstein J. Nanotechnol. 11, 854–857 (2020)

    CAS  Google Scholar 

  31. H.A. Ahmad et al., Effect of PVP as a capping agent in single reaction synthesis of nanocomposite soft/hard ferrite nanoparticles. J. Magn. Magn. Mater. 428, 219–222 (2017)

    CAS  Google Scholar 

  32. M.B. Ismail et al., A comparative study on surface treatments in the immobilization improvement of hexahistidine-tagged protein on the indium tin oxide surface. J. Nanomed. Nanotechnol. (2016). https://doi.org/10.4172/2157-7439.1000372

    Article  Google Scholar 

  33. P. Scherrer, Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen (Springer, Berlin, 1912)

    Google Scholar 

  34. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Charact. 58(10), 883–891 (2007)

    CAS  Google Scholar 

  35. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11(2), 102–113 (1978)

    CAS  Google Scholar 

  36. I.A. Safo et al., The role of polyvinylpyrrolidone (PVP) as a capping and structure-directing agent in the formation of Pt nanocubes. Nanoscale Adv. (2019). https://doi.org/10.1039/C9NA00186G

    Article  Google Scholar 

  37. Abeer Jabra Shnoudeh et al., Synthesis, characterization, and applications of metal nanoparticles. Biomaterials and bionanotechnology (Elsevier, Amsterdam, 2019)

    Google Scholar 

  38. V. Selvamani, Stability studies on nanomaterials used in drugs. Micro and nano technologies (Elsevier, Amsterdam, 2019)

    Google Scholar 

  39. Y.Y. Chan et al., Assessments of surface coverage after nanomaterials are drop cast onto electrodes for electroanalytical applications. ChemElectroChem 2(7), 1003–1009 (2015)

    CAS  Google Scholar 

  40. I. Jeerapan, S. Poorahong, Review—flexible and stretchable electrochemical sensing systems: materials, energy sources, and integrations. J. Electrochem. Soc. (2020). https://doi.org/10.1149/1945-7111/ab7117

    Article  Google Scholar 

  41. D. Gounden, S. Khene, N. Nombona, Electroanalytical detection of heavy metals using metallophthalocyanine and silica-coated iron oxide composites. Chem. Pap. 72(12), 3043–3056 (2018)

    CAS  Google Scholar 

  42. J.E.B. Randles, A cathode ray polarography. Part. II—the current-voltage curves. Trans. Faraday Soc. 44, 327–338 (1948)

    CAS  Google Scholar 

  43. A. Ševčík, Oscillographic polarography with periodical triangular voltage. Collect. Czech. Chem. Commun. 13, 349–377 (1948)

    Google Scholar 

  44. T. Al-Gahouari et al., Resolution improvement for anodic stripping signals of lead and detached indium from reduced graphene oxide/indium tin oxide (rGO/ITO) electrode using bromide ion. Appl. Phys. A 127(5), 326 (2021)

    CAS  Google Scholar 

  45. P.M. Lee et al., Reduced graphene oxide decorated with tin nanoparticles through electrodeposition for simultaneous determination of trace heavy metals. Electrochim. Acta 174, 207–214 (2015)

    CAS  Google Scholar 

  46. N. Yusoff, Chapter 7 - graphene-polymer modified electrochemical sensors, in Graphene-based electrochemical sensors for biomolecules. ed. by A. Pandikumar, P. Rameshkumar (Elsevier, Amsterdam, 2019), pp.155–186

    Google Scholar 

  47. S.E. Bahinting et al., Bismuth film-coated gold ultramicroelectrode array for simultaneous quantification of Pb(II) and Cd(II) by square wave anodic stripping voltammetry. Sensors 21, 1811 (2021)

    CAS  Google Scholar 

  48. Chapter 5 Preconcentration of environmental samples, in Comprehensive Analytical Chemistry (Elsevier: Amsterdam, 1999), p. 185–215. https://doi.org/10.1016/S0166-526X(99)80007-5

  49. J. Wang et al., Hierarchical sulfur-doped graphene foam embedded with Sn nanoparticles for superior lithium storage in LiFSI-based electrolyte. ACS Appl. Mater. Interfaces (2019). https://doi.org/10.1021/acsami.9b10613

    Article  Google Scholar 

  50. M. Wang et al., High-performance tin phosphide/carbon composite anode for lithium-ion batteries. Dalton Trans. (2020). https://doi.org/10.1039/D0DT03139A

    Article  Google Scholar 

  51. Y. Sayato, WHO guidelines for drinking-water quality. Eisei Kagaku 35(5), 307–312 (1989)

    Google Scholar 

  52. M. Jin et al., Review of the distribution and detection methods of heavy metals in the environment. Anal. Methods 12(48), 5747–5766 (2020)

    CAS  Google Scholar 

  53. Y. Wei et al., SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II): an interesting favorable mutual interference. J. Phys. Chem. C 116(1), 1034–1041 (2012)

    CAS  Google Scholar 

  54. M. Ramalingam, V.K. Ponnusamy, S.N. Sangilimuthu, A nanocomposite consisting of porous graphitic carbon nitride nanosheets and oxidized multiwalled carbon nanotubes for simultaneous stripping voltammetric determination of cadmium(II), mercury(II), lead(II) and zinc(II). Microchim. Acta 186(2), 69 (2019)

    Google Scholar 

  55. S.J. Prabakar, C. Sakthivel, S.S. Narayanan, Hg(II) immobilized MWCNT graphite electrode for the anodic stripping voltammetric determination of lead and cadmium. Talanta 85(1), 290–297 (2011)

    CAS  Google Scholar 

  56. G. Zhao, H. Wang, G. Liu, Sensitive determination of trace Cd(ii) and Pb(ii) in soil by an improved stripping voltammetry method using two different in situ plated bismuth-film electrodes based on a novel electrochemical measurement system. RSC Adv. 8(10), 5079–5089 (2018)

    CAS  Google Scholar 

  57. G. Tyler, ICP-OES, ICP-MS and AAS Techniques Compared (Technical notes Horiba Group, 2003). https://www.semanticscholar.org/paper/ICP-OES-%2C-ICP-MS-and-AAS-Techniques-Compared-Tyler-Yvon/3a997ca1a20b00e68003ca04937b2035d0d76ad

  58. M.F. Ahmed et al., Investigating the status of cadmium, chromium and lead in the drinking water supply chain to ensure drinking water quality in Malaysia. Water 12(10), 2653 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the technical support provided by the staff of the School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia. This study was supported by Ministry of Higher Education Malaysia, Fundamental Research Grant Scheme (Grant No. FRGS/1/2020/TK0/USM/01/1), Malaysia Tin Board (304.PBahan. 6050478.L114), and RU Top Down Universiti Sains Malaysia (1001/Pbahan/870049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khairunisak Abdul Razak.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramli, N.H., Loo, J.Y., Mohamad Nor, N. et al. Tin nanoparticle-modified electrode for the simultaneous detection of cadmium (Cd) and lead (Pb) ions. J Mater Sci: Mater Electron 35, 73 (2024). https://doi.org/10.1007/s10854-023-11871-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11871-z

Navigation