Skip to main content
Log in

Nickel tungstate nanoparticles: synthesis, characterization and electrochemical sensing of mercury(II) ions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nano particulate metal oxides gained significant research interest in recent years for various applications with the intension of exploring enhanced properties of miniaturization. In this research work, nickel tungstate nanoparticles (NiWO4 nanoparticles) were successfully synthesized via a simple and efficient sucrose-nitrate decomposition method. The synthesized nanoparticles were characterized using various analytical techniques such as PXRD, SEM, TEM, BET measurements and FTIR. Transmission electron microscope images reveals the nearly spherical shaped nanoparticles of average particle size 15–35 nm. Photoluminescence characteristics of synthesized NiWO4 nanoparticles were investigated at room temperature. Further, the prepared nanoparticles were utilized as glassy carbon electrode modifier for trace level electrochemical sensing of toxic mercury present in water samples. The electrochemical behavior of mercury(II) ions at modified electrode interface has been studied by cyclic voltammetry (CV) and differential pulse stripping voltammetry (DPSV). The results illustrate that, the proposed modified GCE sensor exhibits linearity between the concentration range 10–600 nM with the limit of detection 2.25 nM based on 3σ method for mercury(II) ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T.-D. Nguyen, D. Mrabet, C.-T. T-T-D Vu, T.-O. Dinh, Do, CrystEngComm 13, 1450 (2011). https://doi.org/10.1039/c0ce00091d

    Article  Google Scholar 

  2. Z. Nie, A. Petukhova, E. Kumacheva, Nat. Nanotechnol. Nat. Nanotechnol. 5, 15 (2010)

    Article  Google Scholar 

  3. W. Yunjian, L. Li, G. Li, Appl. Surf. Sci. 393, 159–167 (2017)

    Google Scholar 

  4. S.M.M. Zawawi, R. Yahya, A. Hassan, H.N.M.E. Mahmud, M.N. Daud, Chem. Cent. J. 7, 80 (2013). https://doi.org/10.1186/1752-153x-7-80

    Article  Google Scholar 

  5. H. Eranjaneya, G.T. Chandrappa, Trans. Indian Ceram. Soc. 75, 133–137 (2016)

    Article  Google Scholar 

  6. W. Fan, M.A. Snyder, S. Kumar et al. (2008) Nat. Mater. 7, 984. https://doi.org/10.1038/nmat2302 https://www.nature.com/articles/nmat2302#supplementary-information

  7. M.M. Mohamed, S.A. Ahmed, K.S. Khairou (2014) Appl. Catal. B 150, 63–73

    Google Scholar 

  8. R. Karthiga, B. Kavitha, M. Rajarajan, A. Suganthi, Mater. Sci. Semicond. Process. 40, 123 (2015). https://doi.org/10.1016/j.mssp.2015.05.037

    Article  Google Scholar 

  9. S.M. El-Sheikh, M.M. Rashad, J. Cluster Sci. 26, 743 (2015). https://doi.org/10.1007/s10876-014-0735-z

    Article  Google Scholar 

  10. M.M.J. Sadiq, U.S. Shenoy, D.K. Bhat, J. Phys. Chem. Solids 109, 124 (2017). https://doi.org/10.1016/j.jpcs.2017.05.023

    Article  Google Scholar 

  11. WH Organization (2011) World Health Organization, Geneva

  12. A. Mirzaei, B. Hashemi, K. Janghorban, J. Mater. Sci. 27, 3109 (2016). https://doi.org/10.1007/s10854-015-4200-z

    Google Scholar 

  13. Q. Bao, Z. Yang, Y. Song et al. (2018) J. Mater. Sci. https://doi.org/10.1007/s10854-018-0447-5

    Google Scholar 

  14. S.A. Prashanth, M. Pandurangappa, Mater. Lett. 185, 476 (2016). https://doi.org/10.1016/j.matlet.2016.09.010

    Article  Google Scholar 

  15. R.K. Upadhyay, S. Deshmukh, S. Saha, A. Barman, S.S. Roy, J. Mater. Sci. 26, 7515 (2015). https://doi.org/10.1007/s10854-015-3387-3

    Google Scholar 

  16. J. Li, L. Yan, H. Wang et al., J. Mater. Sci. 28, 3067 (2017). https://doi.org/10.1007/s10854-016-5894-2

    Google Scholar 

  17. V. Gangaiah, P. Adarakatti, A. Siddaramanna, P. Malingappa, G. Thimmanna Chandrappa, Mater. Res. Express 4, 085039 (2017)

    Article  Google Scholar 

  18. P.S. Adarakatti, M. Mahanthappa, E H.A. Siddaramanna, Electroanalysis 30, 1971–1982 (2018). https://doi.org/10.1002/elan.201800124

    Article  Google Scholar 

  19. A. Siddaramanna, P.S. Adarakatti, H. Eranjaneya, L. Shreenivasa, Appl. Chem. Eng. 2, 1–11 (2018). https://doi.org/10.24294/jpd.v2i1.124

    Google Scholar 

  20. Z. Wu, L. Jiang, H. Chen, C. Xu, X. Wang, J. Mater. Sci. 23, 858 (2012). https://doi.org/10.1007/s10854-011-0506-7

    Google Scholar 

  21. S. Li, X. Gu, Y. Zhao, Y. Qiang, S. Zhang, J. Mater. Sci. 27, 8455 (2016). https://doi.org/10.1007/s10854-016-4860-3

    Google Scholar 

  22. S. Mani, V. Vediyappan, S.-M. Chen et al. Sci. Rep. 6, 24128 (2016). https://doi.org/10.1038/srep24128 https://www.nature.com/articles/srep24128#supplementary-information

  23. L. Weber, U. Egli, J. Mater. Sci. 12, 1981 (1977). https://doi.org/10.1007/bf00561969

    Article  Google Scholar 

  24. KT Jacob, J. Mater. Sci. 12, 1647 (1977). https://doi.org/10.1007/bf00542815

    Article  Google Scholar 

  25. A. Sen, P. Pramanik, J. Eur. Ceram. Soc. 21, 745 (2001). https://doi.org/10.1016/S0955-2219(00)00265-X

    Article  Google Scholar 

  26. J.H. Ryu, J.-W. Yoon, C.S. Lim, W.-C. Oh, K.B. Shim, Ceram. Int. 31, 883 (2005). https://doi.org/10.1016/j.ceramint.2004.09.015

    Article  Google Scholar 

  27. R. Talebi, J. Mater. Sci. 27, 3565 (2016). https://doi.org/10.1007/s10854-015-4192-8

    Google Scholar 

  28. O. Thoda, G. Xanthopoulou, G. Vekinis, A. Chroneos, Adv. Eng. Mater. 20, 1800047 (2018). https://doi.org/10.1002/adem.201800047 Doi

    Article  Google Scholar 

  29. H. Eranjaneya, P.S. Adarakatti, A. Siddaramanna, P. Malingappa, G.T. Chandrappa, Mater. Sci. Semicond. Process. 86, 85 (2018). https://doi.org/10.1016/j.mssp.2018.06.020

    Article  Google Scholar 

  30. C. Choodamani, N. Gp, A. Siddaramanna, D. Prasad, B.R. Basavanna, G.T. Chandrappa, J. Alloys Compd. 103–109 (2013)

  31. S. Anusha, B.S. Anandakumar, M. Chakrabhavi Dhananjaya et al. RSC Adv. 4, 52181–52188 (2014)

    Google Scholar 

  32. H. Eranjaneya, G.T. Chandrappa, J. Sol–Gel. Sci. Technol. 85, 585 (2018). https://doi.org/10.1007/s10971-017-4545-2

    Article  Google Scholar 

  33. N.J. Venkatesha, Y.S. Bhat, B.S. Jai Prakash, Appl. Catal. A 496, 51 (2015). https://doi.org/10.1016/j.apcata.2015.02.036

    Article  Google Scholar 

  34. M.M. Mohamed, S.A. Ahmed, K.S. Khairou, Appl. Catal. B 150, 63–73 (2014). https://doi.org/10.1016/j.apcatb.2013.12.001

    Google Scholar 

  35. I. Cesarino, É.T.G. Cavalheiro, Electroanalysis 20, 2301 (2008). https://doi.org/10.1002/elan.200804325

    Article  Google Scholar 

  36. W. Yantasee, Y. Lin, T.S. Zemanian, G.E. Fryxell, Analyst 128, 467 (2003). https://doi.org/10.1039/b300467h

    Article  Google Scholar 

  37. H. Ju, D. Leech, J. Electroanal. Chem. 484, 150 (2000). https://doi.org/10.1016/S0022-0728(00)00071-1

    Article  Google Scholar 

  38. A. Walcarius, C. Delacôte, Anal. Chim. Acta 547, 3 (2005). https://doi.org/10.1016/j.aca.2004.11.047

    Article  Google Scholar 

  39. J. Cui, S. Xu, L. Wang, Sci. China Mater. 60, 352 (2017). https://doi.org/10.1007/s40843-017-9019-4

    Article  Google Scholar 

  40. H. Xing, J. Xu, X. Zhu et al., J. Electroanal. Chem. 760, 52 (2016). https://doi.org/10.1016/j.jelechem.2015.11.043

    Article  Google Scholar 

  41. A. Afkhami, S. Sayari, F. Soltani-Felehgari, T. Madrakian, J. Iran. Chem. Soc. 12, 257 (2015). https://doi.org/10.1007/s13738-014-0480-0

    Article  Google Scholar 

  42. M.-H. Chiu, J.-M. Zen, A.S. Kumar, D. Vasu, Y. Shih, Electroanalysis 20, 2265 (2008). https://doi.org/10.1002/elan.200804307 Doi

    Article  Google Scholar 

  43. P.S. Adarakatti, V. Gangaiah, A. Siddaramanna Mater. Sci. Semicond. Process. 84: 157 (2018). https://doi.org/10.1016/j.mssp.2018.05.010

    Article  Google Scholar 

  44. H.R. Rajabi, M. Roushani, M. Shamsipur, J. Electroanal. Chem. 693, 16 (2013). https://doi.org/10.1016/j.jelechem.2013.01.003

    Article  Google Scholar 

Download references

Acknowledgements

The author, Eranjaneya H, acknowledges the CSIR, New Delhi, India, for awarding CSIR-SRF fellowship and Siddaramanna A, acknowledges the Science and Engineering Research Board (ECR/2017/ 000743) Government of India, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrappa Gujjarahalli Thimmanna.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 174 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eranjaneya, H., Adarakatti, P.S., Siddaramanna, A. et al. Nickel tungstate nanoparticles: synthesis, characterization and electrochemical sensing of mercury(II) ions. J Mater Sci: Mater Electron 30, 3574–3584 (2019). https://doi.org/10.1007/s10854-018-00635-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-00635-9

Navigation