Skip to main content
Log in

Preparation and properties of Sn composite C-coated Li4Ti5O12 materials for lithium–sulfur battery anodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Li4Ti5O12 (LTO) is a very prospective anode material for lithium–sulfur batteries (LSBs) due to its ability to effectively suppress the “shuttle effect” of polysulfides in the sulfur cathode and inhibits the growth of lithium dendrites. Unfortunately, the low electronic conductivity of LTO results in low Coulombic efficiency and cycling rate. In this work, three metal Sn composite LTO and introduced doped carbon LTO/Sn/C-x (x = 20, 40, and 60) encapsulate as the anode material for LSBs were employed by high-temperature solid-phase method and the structure, morphology, and electrochemical properties of LTO/Sn/C-x have been investigated. The results demonstrate that electronic conductivity, lithium-ion diffusion rate, discharge specific capacity, discharge rate capability, and stability of LTO/Sn/C-x electrodes are significantly improved. Among them, LTO/Sn/C-20 electrode exhibits the highest initial discharge specific capacity (339.54 mAh g−1) at 0.1 C, which is 1.2-fold of LTO/C (291.56 mAh g−1), and the initial discharge capacity from 224.96 mAh g−1 to 197.39 mAh g−1 after 150 cycles, corresponds to 87.7% of the initial stable discharge capacity. The outstanding performance of LTO/Sn/C-20 can be attributed to the low interface impedance and higher electronic conductivity, and appropriate amount of metal Sn composite can improve the electrochemical activity. Moreover, the carbon layer on the material surface was proven to reduce the disadvantage of volume expansion of Sn during charge–discharge processes. This work demonstrates that composite metal Sn is an effective method to improve LTO multiplication performance, providing valuable insights into the design and optimization of anode electrode materials for Li-S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. G. Chen, L. Yan, H. Luo, S. Guo, Adv. Mater. 28, 7580 (2016)

    CAS  Google Scholar 

  2. Y. Yao, C. Chang, H. Sun, D. Guo, R. Li, X. Pu, J. Zhai, ACS Appl. Mater. Interfaces. 14, 25267 (2022)

    CAS  Google Scholar 

  3. K. Xu, X. Liu, J. Liang, J. Cai, K. Zhang, Y. Lu, X. Wu, M. Zhu, Y. Liu, Y. Zhu, G. Wang, Y. Qian, ACS Energy Lett. 3, 420 (2018)

    CAS  Google Scholar 

  4. J. Zheng, X. Fan, G. Ji, H. Wang, S. Hou, K.C. DeMella, S.R. Raghavan, J. Wang, K. Xu, C. Wang, Nano Energy. 50, 431 (2018)

    CAS  Google Scholar 

  5. Q. Deng, X. Dong, P.K. Shen, J. Zhu, Adv. Sci. 10, 2207470 (2023)

    CAS  Google Scholar 

  6. W. Feng, Y. Niu, X. Zheng, W. Su, J. Chen, L. Zhang, J. Mater. Sci. Mater. Electron. 34, 779 (2023)

    CAS  Google Scholar 

  7. J. Zhang, H. Huang, J. Bae, S.H. Chung, W. Zhang, A. Manthiram, G. Yu, Small Methods. 2, 1700279 (2018)

    Google Scholar 

  8. H.-J. Peng, J.-Q. Huang, X.-B. Cheng, Q. Zhang, Adv. Energy Mater. 7, 1700260 (2017)

    Google Scholar 

  9. S. Bae, I. Nam, S. Park, Y.G. Yoo, S. Yu, J.M. Lee, J.W. Han, J. Yi, ACS Appl. Mater. Interfaces. 7, 16565 (2015)

    CAS  Google Scholar 

  10. S. Xia, J. Song, Q. Zhou, L. Liu, J. Ye, T. Wang, Y. Chen, Y. Liu, Y. Wu, T. van Ree, Adv. Sci. 10, 2301386 (2023)

    CAS  Google Scholar 

  11. Z.N. Ezhyeh, M. Khodaei, F. Torabi, Ceram. Int. 49, 7105 (2023)

    CAS  Google Scholar 

  12. H. Zhang, Y. Yang, H. Xu, L. Wang, X. Lu, X. He, InfoMat 4, e12228 (2022)

    CAS  Google Scholar 

  13. M. Selvamurugan, C. Natarajan, Y. Andou, S. Karuppuchamy, J. Mater. Sci. Mater. Electron. 29, 17826 (2018)

    CAS  Google Scholar 

  14. L. Sun, W. Kong, H. Wu, Y. Wu, D. Wang, F. Zhao, K. Jiang, Q. Li, J. Wang, S. Fan, Nanoscale. 8, 617 (2016)

    CAS  Google Scholar 

  15. M.R. Sovizi, S.M. Pourali, J. Electron. Mater. 47, 6525 (2018)

    CAS  Google Scholar 

  16. A. Lakshmi-Narayana, M. Dhananjaya, C.M. Julien, S.W. Joo, C.V. Ramana, ACS Appl. Mater. Interfaces. 15, 20925 (2023)

    CAS  Google Scholar 

  17. L. Wang, Y. Zhang, H. Guo, J. Li, E.A. Stach, X. Tong, E.S. Takeuchi, K.J. Takeuchi, P. Liu, A.C. Marschilok, S.S. Wong, Chem. Mater. 30, 671 (2018)

    Google Scholar 

  18. Y. Hu, F. Lin, Z. Liu, Ceram. Int. 45, 10976 (2019)

    CAS  Google Scholar 

  19. Z. Yao, X. Xia, D. Xie, Y. Wang, C.-. Zhou, S. Liu, S. Deng, X. Wang, J. Tu, Adv. Funct. Mater. 28, 1802756 (2018)

    Google Scholar 

  20. Y. Wang, H. Rong, B. Li, L. Xing, X. Li, W. Li, J. Power Sources. 246, 213 (2014)

    CAS  Google Scholar 

  21. K.-T. Kim, C.-Y. Yu, C.S. Yoon, S.-J. Kim, Y.-K. Sun, S.-T. Myung, Nano Energy. 12, 725 (2015)

    CAS  Google Scholar 

  22. C. Lin, M.O. Lai, L. Lu, H. Zhou, Y. Xin, J. Power Sources. 244, 272 (2013)

    CAS  Google Scholar 

  23. S.-Y. Yang, J. Yuan, Y.-R. Zhu, T.-F. Yi, Y. Xie, Ceram. Int. 41, 7073 (2015)

    CAS  Google Scholar 

  24. P. Tsai, R.N. Nasara, Y. Shen, C. Liang, Y. Chang, W.-D. Hsu, Acta Mater. 175, 196 (2019)

    CAS  Google Scholar 

  25. S. Huang, Z. Wen, X. Zhu, Z. Lin, J. Power Sources. 165, 408 (2007)

    CAS  Google Scholar 

  26. H. Song, T.-G. Jeong, Y.H. Moon, H.-H. Chun, K.Y. Chung, H.S. Kim, B.W. Cho, Y.-T. Kim, Sci. Rep. 4, 4350 (2014)

    Google Scholar 

  27. S.H. Gong, J.H. Lee, D.W. Chun, J.-H. Bae, S.-C. Kim, S. Yu, S. Nahm, H.-S. Kim, J. Energy Chem. 59, 465 (2021)

    CAS  Google Scholar 

  28. R. Dai, Y. Wang, P. Da, H. Wu, M. Xu, G. Zheng, Nanoscale. 6, 13236 (2014)

    CAS  Google Scholar 

  29. P. Lian, J. Wang, D. Cai, G. Liu, Y. Wang, H. Wang, J. Alloys Compd. 604, 188 (2014)

    CAS  Google Scholar 

  30. Q. Sun, X. Kong, W. Liu, B. Xu, P. Hu, Z. Gao, Y. Huang, J. Alloys Compd. 831, 154677 (2020)

    CAS  Google Scholar 

  31. Y. Zhang, L. Sun, X. Zhao, L. Wu, K. Wang, H. Si, J. Gu, C. Sun, Y. Shi, Y. Zhang, Chem. Commun. 56, 10572 (2020)

    CAS  Google Scholar 

  32. X. Ye, Z. Lin, S. Liang, X. Huang, X. Qiu, Y. Qiu, X. Liu, D. Xie, H. Deng, X. Xiong, Z. Lin, Nano Lett. 19, 1860 (2019)

    CAS  Google Scholar 

  33. D. Song, J. Park, K. Kim, L.S. Lee, J.Y. Seo, Y.-K. Oh, Y.-J. Kim, M.-H. Ryou, Y.M. Lee, K. Lee, Electrochim. Acta. 250, 59 (2017)

    CAS  Google Scholar 

  34. J. Ou, Y. Zhang, L. Chen, Q. Zhao, Y. Meng, Y. Guo, D. Xiao, J. Mater. Chem. A 3, 6534 (2015)

    CAS  Google Scholar 

  35. J.H. Lee, S.H. Oh, S.Y. Jeong, Y.C. Kang, J.S. Cho, Nanoscale. 10, 21483 (2018)

    CAS  Google Scholar 

  36. Y. Chen, C. Han, J. Zhu, Diam. Relat. Mater. 131, 109610 (2023)

    CAS  Google Scholar 

  37. X. Li, X. Zhang, X. Niu, J. Zhang, R. Wu, J.S. Chen, Y. Yu, Adv. Funct. Mater. 33, 2300914 (2023)

    CAS  Google Scholar 

  38. Z. Ali, S.N. Cha, J.I. Sohn, I. Shakir, C. Yan, J.M. Kim, D.J. Kang, J. Mater. Chem. 22, 17625 (2012)

    CAS  Google Scholar 

  39. P. Zeng, X. Zhou, J. Peng, X. Huang, B. Chang, G. Chen, M. Chen, L. Zheng, Y. Pei, J. Su, X. Wang, Adv. Funct. Mater. 33, 2211818 (2023)

    CAS  Google Scholar 

  40. C. Yuan, X. Song, P. Zeng, G. Liu, S. Zhou, G. Zhao, H. Li, T. Yan, J. Mao, H. Yang, T. Cheng, J. Wu, L. Zhang, Nano Energy. 110, 108353 (2023)

    CAS  Google Scholar 

  41. L. Shen, X. Zhang, E. Uchaker, C. Yuan, G. Cao, Adv. Energy Mater. 2, 691 (2012)

    CAS  Google Scholar 

  42. Z. Zhu, F. Cheng, J. Chen, J. Mater. Chem. A 1, 9484 (2013)

    CAS  Google Scholar 

  43. W. Zhang, J. Li, Y. Guan, Y. Jin, W. Zhu, X. Guo, X. Qiu, J. Power Sources. 243, 661 (2013)

    CAS  Google Scholar 

  44. Y. Li, C. Ou, J. Zhu, Z. Liu, J. Yu, W. Li, H. Zhang, Q. Zhang, Z. Guo, Nano Lett. 20, 2034 (2020)

    CAS  Google Scholar 

  45. L. Sun, X. Wang, R.A. Susantyoko, Q. Zhang, Carbon. 82, 282 (2015)

    CAS  Google Scholar 

  46. B. Wang, Y. Xie, T. Liu, H. Luo, B. Wang, C. Wang, L. Wang, D. Wang, S. Dou, Y. Zhou, Nano Energy. 42, 363 (2017)

    CAS  Google Scholar 

  47. Z. Zhu, S. Wang, J. Du, Q. Jin, T. Zhang, F. Cheng, J. Chen, Nano Lett. 14, 153 (2013)

    Google Scholar 

  48. Z. Yang, Z. Zhao, H. Zhou, M. Cheng, R. Yan, X. Tao, S. Li, X. Liu, C. Cheng, F. Ran, ACS Appl. Mater. Interfaces. 13, 51174 (2021)

    CAS  Google Scholar 

  49. Z. He, H. Yang, N.H. Wong, L. Ernawati, J. Sunarso, Z. Huang, Y. Xia, Y. Wang, J. Su, X. Fu, M. Wu, Small. 19, 2207370 (2023)

    CAS  Google Scholar 

  50. H. Li, T. Xian, L. Di, X. Sun, C. Sun, K. Ma, X. Ma, J. Dai, H. Yang, Opt. Mater. 136, 113487 (2023)

    CAS  Google Scholar 

  51. K. Kravchyk, L. Protesescu, M.I. Bodnarchuk, F. Krumeich, M. Yarema, M. Walter, C. Guntlin, M.V. Kovalenko, J. Am. Chem. Soc. 135, 4199 (2013)

    CAS  Google Scholar 

  52. W. Li, R. Yang, J. Zheng, X. Li, Nano Energy. 2, 1314 (2013)

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of China (No. 52070070), Foundation of National Key Scientific Instruments and the Project of Science & Technology Office of Jiangsu Province (Grant No. KB20181043), and Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

ZH contributed toward formal analysis, investigation, writing—original draft, writing—review & editing, data collection, and validation. LS contributed toward formal analysis and editing. KL contributed toward formal analysis. JS contributed toward formal analysis. LC contributed toward formal analysis. ZH contributed toward formal analysis.

Corresponding author

Correspondence to Zuming He.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Shen, L., Lin, K. et al. Preparation and properties of Sn composite C-coated Li4Ti5O12 materials for lithium–sulfur battery anodes. J Mater Sci: Mater Electron 35, 60 (2024). https://doi.org/10.1007/s10854-023-11813-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11813-9

Navigation