Skip to main content
Log in

Analysis of substitution of bismuth cations in CoFe2O4 nanoparticles and their influence on frequency and temperature-dependent dielectric and magnetodielectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi-doped CoFe2O4 (CFO) nanoparticles with different contents of Bi (x = 0.0, 0.05, 0.1, 0.15, and 0.2) were prepared via sol–gel auto-combustion method. The structural characteristics of the prepared samples were characterized using room-temperature X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM). Moreover, the electrical conductivity and magnetic properties of the nanoferrites were investigated using impedance analyzer and vibrating sample magnetometer (VSM). Pure CFO and Bi-doped CFO showed spinel crystalline structure with the presence of secondary phase at higher doping content of Bi. The FESEM micrographs of the nanoferrites showed different aggregations for the different Bi contents and reduction in particle size was obtained with increasing Bi content. With Bi substitution, saturation magnetization was found to increase rapidly. The frequency (100 Hz–1 MHz) and temperature (30–450 °C)-dependent dielectric properties show that the dielectric constant is T-independent and at a certain point increasing trend overcomes. Magnetodielectric (MD) studies revealed the magnetic ordering of Bi-doped CFO consequences in the increase in number of polar domains thereby improving the magnetodielectric effect. The high MD property outcome of this work established the unification of the synthesized samples for multifunctional device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. T. Sodaee, A. Ghasemi, R.S. Razavi, Cation distribution and microwave absorptive behavior of gadolinium substituted cobalt ferrite ceramics. J. Alloys Compd. 706, 133–146 (2017)

    Article  CAS  Google Scholar 

  2. H. Kardile, S.B. Somvanshi, A.R. Chavan, A. Pandit, K. Jadhav, Effect of Cd2 + doping on structural, morphological, optical, magnetic and wettability properties of nickel ferrite thin films. Optik. 207, 164462 (2020)

    Article  CAS  Google Scholar 

  3. N. Amri, J. Massoudi, K. Nouri, M. Triki, E. Dhahri, L. Bessais, Influence of neodymium substitution on structural, magnetic and spectroscopic properties of Ni–Zn–Al nano-ferrites. RSC Adv. 11(22), 13256–13268 (2021)

    Article  CAS  Google Scholar 

  4. V. Anjana, S. John, P. Prakash, A.M. Nair, A.R. Nair, S. Sambhudevan, B. Shankar, Magnetic properties of copper doped nickel ferrite nanoparticles synthesized by Co precipitation method, in IOP Conference Series: Materials Science and Engineering. (IOP Publishing, Bristol, 2018), p.012024

    Google Scholar 

  5. M. Ahmad, M.A. Khan, A. Mahmood, S.-S. Liu, A.H. Chughtai, W.-C. Cheong, B. Akram, G. Nasar, Role of ytterbium on structural and magnetic properties of NiCr0.1Fe1.9O4 co-precipitated ferrites. Ceram. Int. 44(5), 5433–5439 (2018)

    Article  CAS  Google Scholar 

  6. D.H.K. Reddy, Y.-S. Yun, Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord. Chem. Rev. 315, 90–111 (2016)

    Article  CAS  Google Scholar 

  7. K.K. Kefeni, B.B. Mamba, Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment. SM&T. 23, e00140 (2020)

    CAS  Google Scholar 

  8. S.J. Salih, W.M. Mahmood, Review on magnetic spinel ferrite (MFe2O4) nanoparticles: from synthesis to application. Heliyon 9, e16601 (2023)

    Article  CAS  Google Scholar 

  9. T. Sivaranjani, S. Rajakarthihan, G. Bharath, M.A. Haija, F. Banat, An advanced photo-oxidation process for pharmaceuticals using plasmon-assisted Ag-CoFe2O4 photocatalysts. Chemosphere 341, 139984 (2023)

    Article  CAS  Google Scholar 

  10. G. Palanisamy, K. Nora Hamad Al-Shaalan, G. Bhuvaneswari, G. Bharathi, T. Bharath, T. Pazhanivel, V.E. Sathishkumar, An efficient and magnetically recoverable g-C3N4/ZnS/CoFe2O4 nanocomposite for sustainable photodegradation of organic dye under UV–visible light illumination. Environ. Res. 201, 111429 (2021)

    Article  CAS  Google Scholar 

  11. G. Bharath, A. Hai, T. Kiruthiga, K. Rambabu, M.A. Sabri, J. Park, M.Y. Choi, F. Banat, M.A. Haija, Fabrication of Ru–CoFe2O4/RGO hierarchical nanostructures for high-performance photoelectrodes to reduce hazards Cr (VI) into cr (III) coupled with anodic oxidation of phenols. Chemosphere. 299, 134439 (2022)

    Article  CAS  Google Scholar 

  12. G. Katoch, R. Jasrotia, J. Prakash, A. Verma, A. Kandwal, S.K. Godara, R. Verma, V. Raja, G. Kumar, Crystal structure, synthesis, properties and potential applications of cobalt spinel ferrite: A brief review. Mater. Today (2023). https://doi.org/10.1016/j.matpr.2023.03.585

    Article  Google Scholar 

  13. S. Gupta, R. Fernandes, R. Patel, M. Spreitzer, N. Patel, A review of cobalt-based catalysts for sustainable energy and environmental applications. Appl. Catal. 661, 119254 (2023)

    Article  CAS  Google Scholar 

  14. S. Amiri, H. Shokrollahi, The role of cobalt ferrite magnetic nanoparticles in medical science. Mater. Sci. Eng. Cvol. 33(1), 1–8 (2013)

    Article  CAS  Google Scholar 

  15. S. Jauhar, J. Kaur, A. Goyal, S. Singhal, Tuning the properties of cobalt ferrite: a road towards diverse applications. RSC Adv. vol. 6(100), 97694–97719 (2016)

    Article  CAS  Google Scholar 

  16. S.I. Ahmad, Nano cobalt ferrites: Doping, Structural, Low-temperature, and room temperature magnetic and dielectric properties–A comprehensive review. J. Magn. Magn. 562, 169840 (2022)

    Article  CAS  Google Scholar 

  17. M. Junaid, A.I. Qazafi, M.A. Khan, S. Gulbadan, S.Z. Ilyas, H.H. Somaily, M.S. Attia, M.A. Amin, The influence of Zr and Ni co-substitution on structural, dielectric and magnetic traits of lithium spinel ferrites. Ceram. Int. 48(10), 14307–14314 (2022)

    Article  CAS  Google Scholar 

  18. S. Bahhar, Structural, magnetic and magnetocaloric properties of TMCeFeO4 (TM = Mn, Co) spinel ferrites powders. J. Magn. Magn. Mater. 539, 168416 (2021)

    Article  CAS  Google Scholar 

  19. F. Majid, A. Shahin, S. Ata, I. Bibi, A. Malik, A. Ali, A. Laref, M. Iqbal, A. Nazir, The effect of temperature on the structural, dielectric and magnetic properties of cobalt ferrites synthesized via hydrothermal method. ZPC 235(10), 1279–1296 (2021)

    CAS  Google Scholar 

  20. V. Prochazka, A. Burvalova, V. Vrba, J. Kopp, Formation of cobalt ferrites investigated by transmission and emission mössbauer spectroscopy. Acta Chim. Slov. 67(2), 522–529 (2020)

    Article  CAS  Google Scholar 

  21. T. Dippong, E.A. Levei, O. Cadar, Recent advances in synthesis and applications of MFe2O4 (M = co, Cu, Mn, Ni, Zn) nanoparticles. Nanomaterials 11(6), 1560 (2021)

    Article  CAS  Google Scholar 

  22. S. Castro-Lopes, Y. Guerra, A. Silva-Sousa, D.M. Oliveira, L.A.P. Gonçalves, A. Franco, E. Padrón-Hernández, R. Peña-Garcia, Influence of pH on the structural and magnetic properties of Fe-doped ZnO nanoparticles synthesized by sol gel method. Solid State Sci 109, 106438 (2020)

    Article  CAS  Google Scholar 

  23. P.A. Vinosha, A. Manikandan, A.C. Preetha, A. Dinesh, Y. Slimani, M.A. Almessiere, A. Baykal, B. Xavier, G.F. Nirmala, Review on recent advances of synthesis, magnetic properties, and water treatment applications of cobalt ferrite nanoparticles and nanocomposites. J. Supercond. Nov. Magn. 34, 995–1018 (2021)

    Article  CAS  Google Scholar 

  24. V.R. Bhagwat, A.V. Humbe, S.D. More, K.M. Jadhav, Sol-gel auto combustion synthesis and characterizations of cobalt ferrite nanoparticles: Different fuels approach. Mater. Sci. Eng. 248, 114388 (2019)

    Article  CAS  Google Scholar 

  25. I.H. Gul, A. Maqsood, Structural, magnetic and electrical properties of cobalt ferrites prepared by the sol–gel route. J. Alloy Compd. 465, 227 (2008)

    Article  CAS  Google Scholar 

  26. K.L. Routray, D. Sanyal, Gamma irradiation induced structural, electrical, magnetic and ferroelectric transformation in bismuth doped nanosized cobalt ferrite for various applications. Mater. Res. Bull. 110, 126–134 (2019)

    Article  CAS  Google Scholar 

  27. K.L. Routray, D. Sanyal, D. Behera, Dielectric, magnetic, ferroelectric, and Mossbauer properties of bismuth substituted nanosized cobalt ferrites through glycine nitrate synthesis method. J. Appl. Phys. 122(22), 224104 (2017)

    Article  Google Scholar 

  28. P.N. Anantharamaiah, H.M. Shashanka, S. Saha, J.A. Chelvane, Enabling cobalt ferrite (CoFe2O4) for low magnetic field strain responsivity through Bi3 + substitution: material for magnetostrictive sensors. J. Alloys Compd. 877, 160285 (2021)

    Article  CAS  Google Scholar 

  29. M.A. Almessiere, Y. Slimani, H. Gungunes, M.A. Gondal, M. Hassan, S.E. Shirsath, A. Baykal, Bi3 + and V3 + co-substituted Ni-Co spinel ferrites: synthesis, optical, magnetic characterization and hyperfine interaction. Mater. Sci. Eng. 284, 115905 (2022)

    Article  CAS  Google Scholar 

  30. M. Atif, R.S. Turtelli, R. Grössinger, M. Siddique, M. Nadeem, Adsorption of chromium (VI) on bismuth incorporated cobalt ferrite nanoparticles. Ceram. Int. 40, 471–478 (2014)

    Article  CAS  Google Scholar 

  31. P. Kumar, S. Pathak, A. Singh, H. Khanduri, X. Wang, G.A. Basheed, R.P. Pant, Optimization of cobalt concentration for improved magnetic characteristics and stability of CoxFe3-xO4 mixed ferrite nanomagnetic fluids. Mater. Chem. Phys. 2021, 124476 (2021)

    Article  Google Scholar 

  32. P. Kumar, S. Pathak, A. Singh, H. Khanduri, G.A. Basheed, L. Wang, R.P. Pant, Microwave spin resonance investigation on the effect of the post-processing annealing of CoFe2O4 nanoparticles. Nanoscale Adv. 2, 1939–1948 (2020)

    Article  CAS  Google Scholar 

  33. S. Pathak, R. Verma, P. Kumar, A. Singh, S. Singhal, P. Sharma, K. Jain, R.P. Pant, X. Wang, Facile synthesis, Static, and dynamic magnetic characteristics of varying size double-surfactant-coated Mesoscopic magnetic nanoparticles dispersed stable aqueous magnetic fluids. J. Nanomater. 11, 3009 (2021)

    Article  CAS  Google Scholar 

  34. S.H. Liu, H.M. Tsai, C.W. Pao, J.W. Chiou, D.C. Ling, W.F. Pong, M.-H. Tsai, H.J. Lin, L.Y. Jang, J.F. Lee, J.H. Hsu, W.J. Wang, C.J. Hsu, Electronic and magnetic properties of the Ag-doped Fe3O4 films studied by x-ray absorption spectroscopy. Appl. Phys. Lett. 89, 092112 (2006)

    Article  Google Scholar 

  35. S. Banerjee, S.O. Raja, M. Sardar, N. Gayathri, B. Ghosh, A. Dasgupta, Iron oxide nanoparticles coated with gold: enhanced magnetic moment due to interfacial effects. J. Appl. Phys. 109, 123902 (2011)

    Article  Google Scholar 

  36. R. Master, R.J. Choudhary, D.M. Phase, Effect of silver addition on structural, electrical and magnetic properties of Fe3O4 thin films prepared by pulsed laser deposition. J. Appl. Phys. 111, 073907 (2012)

    Article  Google Scholar 

  37. G.G. Khan, D. Sarkar, A.K. Singh, K. Mandal, Enhanced band gap emission and ferromagnetism of au nanoparticle decorated α-Fe2O3 nanowires due to surface plasmon and interfacial effects. RSC Adv. 3, 1722–1727 (2013)

    Article  CAS  Google Scholar 

  38. G. Dixit, J.P. Singh, R.C. Srivastava, H.M. Agrawal, Structural, optical and magnetic studies of Ce doped NiFe2O4 nanoparticles. J. Magn. Magn. Mater. 345, 65–71 (2013)

    Article  CAS  Google Scholar 

  39. R.K. Panda, R. Muduli, D. Behera, Electric and magnetic properties of Bi substituted cobalt ferrite nanoparticles: evolution of grain effect. J. Alloys Compd. 634, 239–245 (2015)

    Article  CAS  Google Scholar 

  40. A.P. Amaliya, S. Anand, Investigation on structural, electrical and magnetic properties of titanium substituted cobalt ferrite nanocrystallites. J. Magn. Magn. 467, 14–28 (2018)

    Article  CAS  Google Scholar 

  41. P.A. Vinosha, A. Manikandan, R. Ragu, A. Dinesh, K. Thanrasu, Y. Slimani, A. Baykal, B. Xavier, Impact of nickel substitution on structure, magneto-optical, electrical and acoustical properties of cobalt ferrite nanoparticles. J. Alloys Compd. 857, 157517 (2021)

    Article  CAS  Google Scholar 

  42. A. Gholizadeh, M. Beyranv, Investigation on the structural, magnetic, dielectric and impedance analysis of Mg0.3-xBaxCu0.2Zn0.5Fe2O4 nanoparticles. Physica B 584, 412079 (2020)

    Article  CAS  Google Scholar 

  43. C. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121 (1951)

    Article  CAS  Google Scholar 

  44. S.S. Jadhav, S.E. Shirsath, B.G. Toksha, S.M. Patange, D.R. Shengule, K.M. Jadhav, Physica B 405(12), 2610–2614 (2010)

    Article  CAS  Google Scholar 

  45. J.C. Maxwell, Electricity and Magnetism, vol. 1 (Oxford University Press, New York, 1973), p.828

    Google Scholar 

  46. D. Choudhury, P. Mandal, R. Mathieu, A. Hazarika, S. Rajan, A. Sundaresan, U.V. Waghmare, R. Knut, O. Karis, P. Nordblad, D.D. Sarma, Near-room-temperature colossal magnetodielectricity and multiglass properties in partially disordered La2NiMnO6. Phys. Rev. Lett. 108(12), 127201 (2012)

    Article  CAS  Google Scholar 

  47. J. Lu, A. Günther, F. Schrettle, F. Mayr, S. Krohns, P. Lunkenheimer, A. Pimenov, V.D. Travkin, A.A. Mukhin, A. Loidl, On the room temperature multiferroic BiFeO3: magnetic, dielectric and thermal properties. Eur. Phys. J. B 75, 451–460 (2010)

    Article  CAS  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

SS: conceptualization, writing—original draft preparation, supervision, reviewing, and editing; BD: synthesis and data collection, methodology, and data curation; SY: reviewing and editing; SR: experimental analysis and data collection, editing; JR: data collection.

Corresponding author

Correspondence to Sunirmal Saha.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

This chapter does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, B., Saha, S., Yoshimura, S. et al. Analysis of substitution of bismuth cations in CoFe2O4 nanoparticles and their influence on frequency and temperature-dependent dielectric and magnetodielectric properties. J Mater Sci: Mater Electron 34, 2316 (2023). https://doi.org/10.1007/s10854-023-11716-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11716-9

Navigation