Skip to main content
Log in

Influence of dysprosium-doped nanoparticles on the physico-chemical properties of spray-deposited CuO thin films for photocatalytic degradation of methylene blue

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Transparent conductive oxide thin films based on copper oxide (CuO) doped with dysprosium (Dy) at varying concentrations (3, 6, and 9 at.%) were elaborated via a simple and cost-effective spray pyrolysis method on glass substrates heated to 350 °C. The impact of Dy doping levels on the physical–chemical properties of the CuO thin films was investigated. X-ray diffraction analysis revealed that all films exhibited a monoclinic CuO structure with a preference for the (111) crystallographic plane. The average crystallite size (D) ranged from 16 to 25 nm, indicating the formation of nanocrystalline structures. Dy doping led to increased micro-strain and defect density in the films. Raman spectroscopy confirmed the presence of the three vibrational phonon modes 1Ag, Bg1 and Bg2 of CuO, with characteristic peaks at 300, 350, and 632 cm−1. Morphological analysis using FE-SEM depicted rough, granular surfaces with diminishing roughness upon Dy doping. Atomic force microscopy (AFM) revealed that the CuO:Dy 9% exhibited the highest surface roughness, with an Rq of 53.51 nm and a Ra of 34.29 nm. Energy-dispersive X-ray spectroscopy (EDS) verified the presence of Cu, O, and Dy nanoparticles and established the influence of Dy concentration on the film's composition. The electrical resistivity of CuO:Dy thin films decreased with increasing Dy doping, reaching a minimum of 0.11 × 103 Ω cm for CuO:Dy 9%. Moreover, films with reduced thickness displayed enhanced electrical conductivity. All sprayed films demonstrated high optical transparency (\(\sim\) 80%), while the optical bandgap decreased from 2.19 to 1.68 eV with rising Dy doping levels. Notably, Dy-doped CuO thin films exhibited promising photocatalytic activity, showcasing efficient methylene blue degradation under solar irradiation. CuO:Dy thin films, particularly the 9% Dy-doped variant, displayed exceptional photocatalytic efficiency (81.96%), marked by a superior kinetic rate constant of around 8.88 × 10–3 min−1. This study highlights the potential of Dy-doped CuO thin films in various applications, particularly as efficient and stable photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data sharing is not relevant to this article as no dataset was generated or analyzed during the current study.

References

  1. H. Dakhlaoui, J. Seibert, K. Hakala Assendelft, Hydrological impacts of climate change in Northern Tunisia (2019), pp. 301–303. https://doi.org/10.1007/978-3-030-01572-5_71.

  2. L. Soltani, T. Mellah, Exploring farmers’ adaptation strategies to water shortage under climate change in the Tunisian semi-arid region. Environ. Manag. 71(1), 74–86 (2023). https://doi.org/10.1007/s00267-022-01604-z

    Article  Google Scholar 

  3. Y. Yehia, D.M.M.M. Soliman, An analytical study of investment in the use of treated wastewater project in the Egyptian agricultural sector. Bulg. J. Agric. Sci. 28, 250–264 (2022)

    Google Scholar 

  4. D. Peramune et al., Recent advances in biopolymer-based advanced oxidation processes for dye removal applications: a review. Environ. Res. 215, 114242 (2022). https://doi.org/10.1016/j.envres.2022.114242

    Article  CAS  Google Scholar 

  5. M. Sygletou, S. Benedetti, A. di Bona, M. Canepa, F. Bisio, E. Bellingeri, In-operando optical spectroscopy of field-effect-gated Al-doped ZnO. ACS Appl. Mater. Interfaces 15(2), 3112–3118 (2023). https://doi.org/10.1021/acsami.2c16668

    Article  CAS  Google Scholar 

  6. S. Qu, H. Wu, Y.H. Ng, Thin zinc oxide layer passivating bismuth vanadate for selective photoelectrochemical water oxidation to hydrogen peroxide. Small 19, 2300347 (2023)

    Article  CAS  Google Scholar 

  7. Y. Yang, B. Maeng, D.G. Jung et al., Annealing effects on SnO2 thin film for H2 gas sensing. Nanomaterials 12(18), 3227 (2022)

    Article  CAS  Google Scholar 

  8. H. Güney, D. Iskenderoğlu, M.E. Güldüren et al., An investigation on CuO thin films grown by ultrasonic spray pyrolysis at different substrate temperatures: structural, optical and supercapacitor electrode characterizations. Opt. Mater. 132, 112869 (2022)

    Article  Google Scholar 

  9. H. Wu et al., Metal–organic framework decorated cuprous oxide nanowires for long-lived charges applied in selective photocatalytic CO2 reduction to CH4. Angew. Chem. Int. Ed. 60(15), 8455–8459 (2021). https://doi.org/10.1002/anie.202015735

    Article  CAS  Google Scholar 

  10. S.R. Bhalerao, D. Lupo, P.R. Berger, Flexible, solution-processed, indium oxide (In2O3) thin film transistors (TFT) and circuits for internet-of-things (IoT). Mater. Sci. Semicond. Process. 139, 106354 (2022)

    Article  CAS  Google Scholar 

  11. A. Nfissi, M. Belhajji, A. Chouiekh et al., Investigation of the structural, electrical and optical properties of Zr-doped CdO thin films for optoelectronic applications. J. Sol-Gel Sci. Technol. 108, 1–10 (2023)

    Article  Google Scholar 

  12. S.S. Shenouda, M.S.A. Hussien, B. Parditka et al., Novel amorphous Al-rich Al2O3 ultra-thin films as active photocatalysts for water treatment from some textile dyes. Ceram. Int. 46(6), 7922–7929 (2020)

    Article  CAS  Google Scholar 

  13. D. Yang, B. Kim, T.H. Eom et al., Epitaxial growth of alpha gallium oxide thin films on sapphire substrates for electronic and optoelectronic devices: progress and perspective. Electron. Mater. Lett. 18(2), 113–128 (2022)

    Article  Google Scholar 

  14. A.B. Younis, Y. Haddad, L. Kosaristanova et al., Titanium dioxide nanoparticles: recent progress in antimicrobial applications. Wiley Interdiscip. Rev. 15(3), e1860 (2023)

    CAS  Google Scholar 

  15. A. Venkateshaiah, M. Černík, V.V.T. Padil, Metal oxide nanoparticles for environmental remediation, in Nanotechnology for Environmental Remediation (Wiley, 2022), pp. 183–213. https://doi.org/10.1002/9783527834143.ch11.

  16. G. Chaloeipote, R. Prathumwan, K. Subannajui, A. Wisitsoraat, C. Wongchoosuk, 3D printed CuO semiconducting gas sensor for ammonia detection at room temperature. Mater. Sci. Semicond. Process. 123, 105546 (2021). https://doi.org/10.1016/j.mssp.2020.105546

    Article  CAS  Google Scholar 

  17. S. Annathurai, S. Chidambaram, B. Baskaran, G.K.D. Prasanna Venkatesan, Green synthesis and electrical properties of p-CuO/n-ZnO heterojunction diodes. J. Inorg. Organomet. Polym. 29(2), 535–540 (2019). https://doi.org/10.1007/s10904-018-1026-1

    Article  CAS  Google Scholar 

  18. S. Lee et al., Sol-gel processed p-Type CuO phototransistor for a near-infrared sensor. IEEE Electron Device Lett. 39(1), 47–50 (2018). https://doi.org/10.1109/LED.2017.2779816

    Article  CAS  Google Scholar 

  19. D. Naveena, R. Dhanabal, A. Chandra Bose, Investigating the effect of La doped CuO thin film as absorber material for solar cell application. Opt. Mater. 127, 112266 (2022). https://doi.org/10.1016/j.optmat.2022.112266

    Article  CAS  Google Scholar 

  20. N.F. Atta, A. Galal, E.H. El-Ads, A.R.M. El-Gohary, Effective and facile determination of vitamin B6 in human serum with CuO nanoparticles/ionic liquid crystal carbon based sensor. J. Electrochem. Soc. 164(13), B730 (2017). https://doi.org/10.1149/2.1981713jes

    Article  CAS  Google Scholar 

  21. Y. Zhao et al., Functional porous MOF-derived CuO octahedra for harmonic soliton molecule pulses generation. ACS Photonics 7(9), 2440–2447 (2020). https://doi.org/10.1021/acsphotonics.0c00520

    Article  CAS  Google Scholar 

  22. M. Chauhan, N. Kaur, R. Bansal, S. Srinivasan Kumar, G.R. Chaudhary, Proficient photocatalytic and sonocatalytic degradation of organic pollutants using CuO nanoparticles. J. Nanomater. 2020, e6123178 (2020). https://doi.org/10.1155/2020/6123178

    Article  CAS  Google Scholar 

  23. C. Guillén, J. Herrero, Single-phase Cu2O and CuO thin films obtained by low-temperature oxidation processes. J. Alloys Compd. 737, 718–724 (2018). https://doi.org/10.1016/j.jallcom.2017.12.174

    Article  CAS  Google Scholar 

  24. P. Sarker et al., Effect of gamma irradiation on structural, morphological and optical properties of thermal spray pyrolysis deposited CuO thin film. Ceram. Int. 47(3), 3626–3633 (2021). https://doi.org/10.1016/j.ceramint.2020.09.211

    Article  CAS  Google Scholar 

  25. P. Datta, M. Sharmin, J. Podder, S. Choudhury, Influence of substrate temperature on the morphological, structural, optical and electrical properties of nanostructured CuO thin films synthesized by spray pyrolysis technique. J. Optoelectron. Adv. Mater. 23, 35–42 (2021)

    CAS  Google Scholar 

  26. A. Nanda, V. Singh, R.K. Jha, J. Sinha, S. Avasthi, N. Bhat, Growth-temperature dependent unpassivated oxygen bonds determine the gas sensing abilities of chemical vapor deposition-grown CuO thin films. ACS Appl. Mater. Interfaces 13(18), 21936–21943 (2021). https://doi.org/10.1021/acsami.1c01085

    Article  CAS  Google Scholar 

  27. N. Al Armouzi, M. Manoua, H. Hilal, A. Liba, M. Mabrouki, Multi-layered sol-gel spin-coated CuO nanofilm characteristic enhancement by Sn doping concentration. Processes 10, 1277 (2022). https://doi.org/10.3390/pr10071277

    Article  CAS  Google Scholar 

  28. A.A. Menazea, A.M. Mostafa, Ag doped CuO thin film prepared via pulsed laser deposition for 4-nitrophenol degradation. J. Environ. Chem. Eng. 8(5), 104104 (2020). https://doi.org/10.1016/j.jece.2020.104104

    Article  CAS  Google Scholar 

  29. J. Sultana, S. Paul, A. Karmakar, R. Yi, G.K. Dalapati, S. Chattopadhyay, Chemical bath deposited (CBD) CuO thin films on n-silicon substrate for electronic and optical applications: Impact of growth time. Appl. Surf. Sci. 418, 380–387 (2017). https://doi.org/10.1016/j.apsusc.2016.12.139

    Article  CAS  Google Scholar 

  30. G. Durai, P. Kuppusami, K. Viswanathan, Investigation on microstructure and improved supercapacitive performance of Mn doped CuO thin films prepared by reactive radio frequency magnetron sputtering. J. Mater. Sci. Mater. Electron. 29(3), 2051–2058 (2018). https://doi.org/10.1007/s10854-017-8118-5

    Article  CAS  Google Scholar 

  31. W. Zheng, Y. Chen, X. Peng, K. Zhong, Y. Lin, Z. Huang, The phase evolution and physical properties of binary copper oxide thin films prepared by reactive magnetron sputtering. Materials 11(7), 7 (2018). https://doi.org/10.3390/ma11071253

    Article  CAS  Google Scholar 

  32. H. Güney, D. İskenderoğlu, M. Gulduren, K. Demi̇r, S. Karadeniz, An investigation on CuO thin films grown by ultrasonic spray pyrolysis at different substrate temperatures: structural, optical and supercapacitor electrode characterizations. Opt. Mater. 132, 112869 (2022). https://doi.org/10.1016/j.optmat.2022.112869

    Article  CAS  Google Scholar 

  33. I. Dundar, M. Krichevskaya, A. Katerski, I.O. Acik, TiO2 thin films by ultrasonic spray pyrolysis as photocatalytic material for air purification. R. Soc. Open Sci. 6(2), 181578 (2019). https://doi.org/10.1098/rsos.181578

    Article  CAS  Google Scholar 

  34. T. Gnanasekar et al., Fabrication of Er, Tb doped CuO thin films using nebulizer spray pyrolysis technique for photosensing applications. Opt. Mater. 123, 111954 (2022). https://doi.org/10.1016/j.optmat.2021.111954

    Article  CAS  Google Scholar 

  35. J.D. Rodney et al., Dysprosium doped copper oxide (Cu1-xDyxO) nanoparticles enabled bifunctional electrode for overall water splitting. Int. J. Hydrogen Energy 46(54), 27585–27596 (2021). https://doi.org/10.1016/j.ijhydene.2021.06.014

    Article  CAS  Google Scholar 

  36. H. Faiz et al., Microstructural and optical properties of dysprosium doped copper oxide thin films fabricated by pulsed laser deposition technique. J. Mater. Sci. 27(8), 8197–8205 (2016). https://doi.org/10.1007/s10854-016-4824-7

    Article  CAS  Google Scholar 

  37. V. Kumar, O.M. Ntwaeaborwa, T. Soga, V. Dutta, H.C. Swart, Rare earth doped zinc oxide nanophosphor powder: a future material for solid state lighting and solar cells. ACS Photonics 4(11), 2613–2637 (2017). https://doi.org/10.1021/acsphotonics.7b00777

    Article  CAS  Google Scholar 

  38. G. Singh, Virpal, R.C. Singh, Highly sensitive gas sensor based on Er-doped SnO2 nanostructures and its temperature dependent selectivity towards hydrogen and ethanol. Sens. Actuators B 282, 373–383 (2019). https://doi.org/10.1016/j.snb.2018.11.086

    Article  CAS  Google Scholar 

  39. M. Dhiman, S. Singhal, Effect of doping of different rare earth (europium, gadolinium, dysprosium and neodymium) metal ions on structural, optical and photocatalytic properties of LaFeO3 perovskites. J. Rare Earths 37(12), 1279–1287 (2019). https://doi.org/10.1016/j.jre.2018.12.015

    Article  CAS  Google Scholar 

  40. A.M. Ahmed, E.M. Abdalla, M. Shaban, Simple and low-cost synthesis of Ba-doped CuO thin films for highly efficient solar generation of hydrogen. J. Phys. Chem. C 124(41), 22347–22356 (2020). https://doi.org/10.1021/acs.jpcc.0c04760

    Article  CAS  Google Scholar 

  41. A.A. Menazea, A.M. Mostafa, E.A. Al-Ashkar, Impact of CuO doping on the properties of CdO thin films on the catalytic degradation by using pulsed-Laser deposition technique. Opt. Mater. 100, 109663 (2020). https://doi.org/10.1016/j.optmat.2020.109663

    Article  CAS  Google Scholar 

  42. V.D. Mote, S.D. Lokhande, L.H. Kathwate, M.B. Awale, Y. Sudake, Structural, optical and magnetic properties of Mn-doped CuO nanoparticles by coprecipitation method. Mater. Sci. Eng. B 289, 116254 (2023). https://doi.org/10.1016/j.mseb.2022.116254

    Article  CAS  Google Scholar 

  43. A. Kumar, M. Kumar, P. Chandra Sati, M.K. Srivastava, S. Ghosh, S. Kumar, Structural, magnetic and optical properties of diluted magnetic semiconductor (DMS) phase of Ni modified CuO nanoparticles. Curr. Appl. Phys. 32, 24–35 (2021). https://doi.org/10.1016/j.cap.2021.09.002

    Article  Google Scholar 

  44. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  45. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102 (1978)

    Article  CAS  Google Scholar 

  46. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater Charact 85, 111 (2013)

    Article  CAS  Google Scholar 

  47. M. Jamal, M.M. Billah, S.A. Ayon, Opto-structural and magnetic properties of fluorine doped CuO nanoparticles: an experimental study. Ceram. Int. 49(6), 10107–10118 (2023). https://doi.org/10.1016/j.ceramint.2022.11.194

    Article  CAS  Google Scholar 

  48. H. Absike et al., Synthesis of CuO thin films based on Taguchi design for solar absorber. Opt. Mater. 118, 111224 (2021). https://doi.org/10.1016/j.optmat.2021.111224

    Article  CAS  Google Scholar 

  49. O. Diachenko et al., Structural and optical properties of CuO thin films synthesized using spray pyrolysis method. Coatings 11(11), 11 (2021). https://doi.org/10.3390/coatings11111392

    Article  CAS  Google Scholar 

  50. D. Prasanth, K.P. Sibin, H.C. Barshilia, Optical properties of sputter deposited nanocrystalline CuO thin films. Thin Solid Films 673, 78–85 (2019). https://doi.org/10.1016/j.tsf.2019.01.037

    Article  CAS  Google Scholar 

  51. F. Bayansal, T. Taşköprü, B. Şahin et al., Effect of cobalt doping on nanostructured CuO thin films. Metall. Mater. Trans. A 45, 3670–3674 (2014). https://doi.org/10.1007/s11661-014-2306-1

    Article  CAS  Google Scholar 

  52. H. Siddiqui, M.R. Parra, M.M. Malik et al., Structural and optical properties of Li substituted CuO nanoparticles. Opt. Quant. Electron. 50, 260 (2018). https://doi.org/10.1007/s11082-018-1527-8

    Article  CAS  Google Scholar 

  53. P. Giri, P. Chakrabarti, Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications. Superlattices Microstruct. 93, 248–260 (2016). https://doi.org/10.1016/j.spmi.2016.03.024

    Article  CAS  Google Scholar 

  54. W. Chen et al., Morphological and structure dual modulation of cobalt-based layer double hydroxides by Ni doping and 2-methylimidazole inducting as bifunctional electrocatalysts for overall water splitting. J. Power. Sources 400, 172–182 (2018). https://doi.org/10.1016/j.jpowsour.2018.08.023

    Article  CAS  Google Scholar 

  55. O. Diachenko, J. Kováč Jr., O. Dobrozhan, P. Novák, J. Kováč, J. Skriniarova, A. Opanasyuk, Structural and optical properties of CuO thin films synthesized using spray pyrolysis method. Coatings 11(11), 1392 (2021)

    Article  CAS  Google Scholar 

  56. S.E. Szakas, K. Menking-Hoggatt, T. Trejos, A. Gundlach-Graham, Elemental characterization of leaded and lead-free inorganic primer gunshot residue standards using single particle inductively coupled plasma time-of-flight mass spectrometry. Appl. Spectrosc. (2022). https://doi.org/10.1177/00037028221142624

    Article  Google Scholar 

  57. A.O. Semenov, V.V. Martyniuk, M.V. Evseeva, O.V. Osadchuk, O.O. Semenova, Electrical properties of the nanocomposite (copper, samarium)-containing complex compound. IOP Conf. Ser. 1254(1), 012029 (2022). https://doi.org/10.1088/1757-899X/1254/1/012029

    Article  Google Scholar 

  58. X. Zhang et al., Microstructure and electro-optical properties of Cu–Ni co-doped AZO transparent conducting thin films by sol–gel method. J. Mater. Sci. Mater. Electron. 26(2), 1151–1158 (2015). https://doi.org/10.1007/s10854-014-2519-5

    Article  CAS  Google Scholar 

  59. X.-Y. Zhang et al., Crystallinity effect on electrical properties of PEALD–HfO2 thin films prepared by different substrate temperatures. Nanomaterials 12(21), 21 (2022). https://doi.org/10.3390/nano12213890

    Article  CAS  Google Scholar 

  60. B. Singh et al., Structural, optical, thermal, mechanical and dielectric studies of Sulfamic acid single crystals: an influence of dysprosium (Dy3+) doping. J. Mol. Struct. 1119, 365–372 (2016). https://doi.org/10.1016/j.molstruc.2016.04.091

    Article  CAS  Google Scholar 

  61. M. Shkir et al., An effect of Fe on physical properties of nanostructured NiO thin films for nonlinear optoelectronic applications. Appl. Phys. A 126(2), 119 (2020). https://doi.org/10.1007/s00339-020-3293-2

    Article  CAS  Google Scholar 

  62. R.A. Ismail, R.S. Abdul-Hamed, Laser ablation of Au–CuO core–shell nanocomposite in water for optoelectronic devices. Mater. Res. Express 4(12), 125020 (2017). https://doi.org/10.1088/2053-1591/aa9e14

    Article  CAS  Google Scholar 

  63. S. Sa-nguanprang, A. Phuruangrat, T. Thongtem, S. Thongtem, Characterization and photocatalysis of visible-light-driven Dy-doped ZnO nanoparticles synthesized by tartaric acid-assisted combustion method. Inorg. Chem. Commun. 117, 107944 (2020). https://doi.org/10.1016/j.inoche.2020.107944

    Article  CAS  Google Scholar 

  64. A. Singh Vig, A. Gupta, O.P. Pandey, Efficient photodegradation of methylene blue (MB) under solar radiation by ZrC nanoparticles. Adv. Powder Technol. 29(9), 2231–2242 (2018). https://doi.org/10.1016/j.apt.2018.06.007

    Article  CAS  Google Scholar 

  65. A.G. Acedo-Mendoza, A. Infantes-Molina, D. Vargas-Hernández, C.A. Chávez-Sánchez, E. Rodríguez-Castellón, J.C. Tánori-Córdova, Photodegradation of methylene blue and methyl orange with CuO supported on ZnO photocatalysts: the effect of copper loading and reaction temperature. Mater. Sci. Semicond. Process. 119, 105257 (2020). https://doi.org/10.1016/j.mssp.2020.105257

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Eric AUBRY and Pascal BRIOIS for their help in providing Electric and SEM characterizations.

Author information

Authors and Affiliations

Authors

Contributions

IH: Investigation, Writing—original draft, Visualization. IL: Data curation, formal analysis- editing, and software. FH: formal analysis. NB: supervision-resources.

Corresponding author

Correspondence to I. Hemmedi.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Ethical approval

The authors declare that this article does not contain any human intervention research conducted by any of the authors. Results are well placed in the context of previous and existing studies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmedi, I., Bitri, N., Harrathi, F. et al. Influence of dysprosium-doped nanoparticles on the physico-chemical properties of spray-deposited CuO thin films for photocatalytic degradation of methylene blue. J Mater Sci: Mater Electron 34, 2306 (2023). https://doi.org/10.1007/s10854-023-11711-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11711-0

Navigation