Skip to main content
Log in

Morphology control and capacitive performance of Co3O4 nanostructures synthesized by NH4F-assisted hydrothermal on Ni foam

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Co3O4 is considered as an excellent capacitive materials for advanced supercapacitors. In this work, three different morphologies of Co3O4 nanostructures, nanowires, nanosheets, both nanowires and nanosheets structure were prepared by the hydrothermal reaction and subsequent heat treatment. The morphological evolutions of different intermediates at different reaction stages were examined and we proposed the mechanism of NH4F regulating the morphology. It was found that NH4F possibly controls the species and morphology of intermediates by adjusting the pH of the hydrothermal system. Finally, the Co3O4 with mixed structure exhibits a specific capacitance of 1005.4 F g−1 at 2 A g−1, and its capacitance retention can maintain to be 99.5% even after 4000 cycles. The excellent electrochemical performance is mainly attributed to the nanostructure composed of both hexagonal nanosheets and needle-like nanowires. We believe this work provides insights for Co3O4 electrode with multi-morphological nanostructures used for the development of advanced supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. G. Ren, X. Pan, S. Bayne, Z. Fan, Kilohertz ultrafast, electrochemical supercapacitors based on perpendicularly-oriented graphene grown inside of nickel foam. Carbon 71, 94–101 (2014)

    Article  CAS  Google Scholar 

  2. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015)

    Article  CAS  Google Scholar 

  3. Q.C. Zhu, D. Zhao, M. Cheng, J. Zhou, K.A. Owusu, L. Mai, Y. Ying, A new view of supercapacitors: integrated supercapacitors. Adv. Energy Mater. 9, 1901081 (2019)

    Article  Google Scholar 

  4. G.F. Ren, S. Li, Z.X. Fan, M.N.F. Hoque, Z. Fan, Ultrahigh-rate supercapacitors with large capacitance based on edge oriented graphene coated carbonized cellulous paper as flexible freestanding electrodes. J. Power. Sources 325, 152–160 (2016)

    Article  CAS  Google Scholar 

  5. Q. Guan, J. Cheng, B. Wang, W. Ni, G. Gu, X. Li, L. Huang, G. Yang, F. Nie, Needle-like Co3O4 anchored on the graphene with enhanced electrochemical performance for aqueous supercapacitors. ACS Appl. Mater. Interfaces 6, 7626–7632 (2014)

    Article  CAS  Google Scholar 

  6. X. Zhang, Y. Zhao, C. Xu, Surfactant dependent self-organization of Co3O4 nanowires on Ni foam for high performance supercapacitors: from nanowire microspheres to nanowire paddy fields. Nanoscale 6, 3638–3646 (2014)

    Article  CAS  Google Scholar 

  7. Q. Li, Z.L. Wang, G.R. Li, R. Guo, L.X. Ding, Y.X. Tong, Design and synthesis of MnO2/Mn/MnO2 sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage. Nano Lett. 12, 3803–3807 (2012)

    Article  CAS  Google Scholar 

  8. Z. Yu, B. Duong, D. Abbitt, J. Thomas, Highly ordered MnO2 nanopillars for enhanced supercapacitor performance. Adv. Mater. 25, 3302–3306 (2013)

    Article  CAS  Google Scholar 

  9. C.Y. Cao, W. Guo, Z.M. Cui, W.G. Song, W. Cai, Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes. J. Mater. Chem. 21, 3204–3209 (2011)

    Article  CAS  Google Scholar 

  10. X. Zhang, W. Shi, J. Zhu, W. Zhao, J. Ma, S. Mhaisalkar, T.L. Maria, Y. Yang, H. Zhang, H.H. Hng, Q. Yan, Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res. 3, 643–652 (2010)

    Article  CAS  Google Scholar 

  11. Y. Lin, T. Wei, H. Chien, S. Lu, Manganese oxide/carbon aerogel composite: an outstanding supercapacitor electrode material. Adv. Energy Mater. 1, 901–907 (2011)

    Article  CAS  Google Scholar 

  12. B. Wang, T. Zhu, H.B. Wu, R. Xu, J.S. Chen, X.W. Lou, Porous Co3O4 nanowires derived from long Co(CO3)0.5(OH) 0.11H2O nanowires with improved supercapacitive properties. Nanoscale 4, 2145–2149 (2012)

    Article  CAS  Google Scholar 

  13. X. Pan, X. Chen, Y. Li, Z. Yu, Facile synthesis of Co3O4 nanosheets electrode with ultrahigh specific capacitance for electrochemical supercapacitors. Electrochim. Acta 182, 1101–1106 (2015)

    Article  CAS  Google Scholar 

  14. X. Xia, Y. Zhang, D. Chao, C. Guan, Y. Zhang, L. Li, X. Ge, I.M. Bacho, J. Tu, H.J. Fan, Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale 6, 5008–5105 (2014)

    Article  CAS  Google Scholar 

  15. G.R. Wang, F.L. Zhu, J. Xia, L. Wang, Y.S. Meng, Y. Zhang, Preparation of Co3O4/carbon derived from ionic liquid and its application in lithium-ion batteries. Electrochim. Acta 257, 138–145 (2017)

    Article  CAS  Google Scholar 

  16. A. Umar, S.D. Raut, A.A. Ibrahim, H. Algadi, H. Albargi, M.A. Alsaiari, M. Shaheer Akhtar, M. Qamar, S. Baskoutas, Perforated Co3O4 nanosheets as high-performing supercapacitor material. Electrochim. Acta 389, 138661 (2021)

    Article  CAS  Google Scholar 

  17. A. Yadav, Y. Hunge, S.B. Kulkarni, Chemical synthesis of Co3O4 nanowires for symmetric supercapacitor device. J. Mater. Sci. Mater. Electron. 29, 16401–16409 (2018)

    Article  CAS  Google Scholar 

  18. M. Yao, Z. Hu, Z. Xu, Y. Liu, Template synthesis of 1D hierarchical hollow Co3O4 nanotubes as high performance supercapacitor materials. J. Alloys Compd. 644, 721–728 (2015)

    Article  CAS  Google Scholar 

  19. Z. Liu, W. Zhou, S. Wang, W. Du, H. Zhang, C. Ding, Y. Du, L. Zhu, Facile synthesis of homogeneous core-shell Co3O4 mesoporous nanospheres as high performance electrode materials for supercapacitor. J. Alloys Compd. 774, 137–144 (2019)

    Article  CAS  Google Scholar 

  20. T. Geng, L. Zhang, H. Wang, K. Zhang, X. Zhou, Facile synthesis of porous Co3O4 nanoplates for supercapacitor applications. Bull. Mater. Sci. 38, 1171–1175 (2015)

    Article  CAS  Google Scholar 

  21. C. Feng, J. Zhang, Y. Deng, C. Zhong, L. Liu, W. Hu, One-pot fabrication of Co3O4 microspheres via hydrothermal method at low temperature for high capacity supercapacitor. Mater. Sci. Eng. B 199, 15–21 (2015)

    Article  CAS  Google Scholar 

  22. B.R. Duan, Q. Cao, Hierarchically porous Co3O4 film prepared by hydrothermal synthesis method based on colloidal crystal template for supercapacitor application. Electrochim. Acta 64, 154–161 (2012)

    Article  CAS  Google Scholar 

  23. Y. Jiang, L. Chen, H. Zhang, Q. Zhang, W. Chen, J. Zhu, D. Song, Two-dimensional Co3O4 thin sheets assembled by 3D interconnected nanoflake array framework structures with enhanced supercapacitor performance derived from coordination complexes. Chem. Eng. J. 292, 1–12 (2016)

    Article  CAS  Google Scholar 

  24. W. Liu, X. Li, M. Zhu, X. He, High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel. J. Power. Sources 282, 179–186 (2015)

    Article  CAS  Google Scholar 

  25. Q. Ke, C. Tang, Z. Yang, M. Zheng, L. Mao, H. Liu, J. Wang, 3D nanostructure of carbon nanotubes decorated Co3O4 nanowire arrays for high performance supercapacitor electrode. Electrochim. Acta 163, 9–15 (2015)

    Article  CAS  Google Scholar 

  26. R. Samal, B. Dash, C.K. Sarangi, K. Sanjay, T. Subbaiah, G. Senanayake, M. Minakshi, Influence of synthesis temperature on the growth and surface morphology of Co3O4 nanocubes for supercapacitor applications. Nanomaterials 7, 356 (2017)

    Article  Google Scholar 

  27. S. Zeng, R. Tang, S. Duan, L. Li, C. Liu, X. Gu, S. Wang, D. Sun, Kinetically controlled synthesis of bismuth tungstate with different structures by a NH4F assisted hydrothermal method and surface-dependent photocatalytic properties. J. Colloid Interface Sci. 432, 236–245 (2014)

    Article  CAS  Google Scholar 

  28. C.H. Tang, X. Yin, H. Gong, Superior performance asymmetric supercapacitors based on a directly grown commercial mass 3D Co3O4@Ni(OH)2 core-shell electrode. ACS Appl. Mater. Interfaces 5, 10574–10582 (2013)

    Article  CAS  Google Scholar 

  29. F. Cao, G.X. Pan, P.S. Tang, H.F. Chen, NiO nanowall array prepared by a hydrothermal synthesis method and its enhanced electrochemical performance for lithium ion batteries. Mater. Res. Bull. 48, 1178–1183 (2013)

    Article  CAS  Google Scholar 

  30. Y. Chen, B. Qu, L. Hu, Z. Xu, Q. Li, T. Wang, High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet-nanowire cluster arrays as self-supported electrodes. Nanoscale 5, 9812–9820 (2013)

    Article  CAS  Google Scholar 

  31. Y. Li, D. Cao, Y. Wang, S. Yang, D. Zhang, K. Ye, K. Cheng, J. Yin, G. Wang, Y. Xu, Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for supercapacitors. J. Power. Sources 279, 138–145 (2015)

    Article  CAS  Google Scholar 

  32. V. Gupta, T. Kusahara, H. Toyama, S. Gupta, N. Miura, Potentiostatically deposited nanostructured α-Co(OH)2: a high performance electrode material for redox-capacitors. Electrochem. Commun. 9, 2315–2319 (2007)

    Article  CAS  Google Scholar 

  33. T. Xue, X. Wang, J.-M. Lee, Dual-template synthesis of Co(OH)2 with mesoporous nanowire structure and its application in supercapacitor. J. Power. Sources 201, 382–386 (2012)

    Article  CAS  Google Scholar 

  34. J. Yang, H. Liu, W.N. Martens, R.L. Frost, Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide and cobalt oxide nanodiscs. J. Phys. Chem. C 114, 111–119 (2010)

    Article  CAS  Google Scholar 

  35. M. Yue, C. Li, Q. Wu, Z. Ma, H. Xu, S. Palaka, A facile synthesis of anisotropic SmCo5 nanochips with high magnetic performance. Chem. Eng. J. 343, 1–7 (2018)

    Article  CAS  Google Scholar 

  36. C. Zhao, X. Wang, S. Wang, Y. Wang, Y. Zhao, W. Zheng, Synthesis of Co(OH)2/graphene/Ni foam nano-electrodes with excellent pseudocapacitive behavior and high cycling stability for supercapacitors. Int. J. Hydrogen Energy 37, 11846–11852 (2012)

    Article  CAS  Google Scholar 

  37. P. Porta, R. Dragone, G. Fierro, M. Inversi, M.L. Jacono, G. Moretti, Preparation and characterisation of cobalt-copper hydroxysalts and their oxide products of decomposition. J. Chem. Soc. 88, 311–319 (1992)

    CAS  Google Scholar 

  38. W. Xing, S. Zhuo, H. Cui, H. Zhou, W. Si, X. Yuan, X. Gao, Z. Yan, Morphological control in synthesis of cobalt basic carbonate nanorods assembly. Mater. Lett. 62, 1396–1399 (2008)

    Article  CAS  Google Scholar 

  39. L. Cui, D. Liu, S. Hao, F. Qu, G. Du, J. Liu, A.M. Asiri, X. Sun, In situ electrochemical surface derivation of cobalt phosphate from a Co(CO3)0.5(OH).0.11H2O nanoarray for efficient water oxidation in neutral aqueous solution. Nanoscale 9, 3752–3756 (2017)

    Article  CAS  Google Scholar 

  40. Y. Wang, H. Xia, L. Lu, J. Lin, Excellent performance in lithium-ion battery anodes: rational synthesis of Co(CO3)0.5(OH)0.11H2O nanobelt array and its conversion into mesoporous and single-crystal Co3O4. ACS Nano 4, 1425–1432 (2010)

    Article  CAS  Google Scholar 

  41. X. Zhang, Y. Guo, Y. Liu, X. Yang, J. Pan, P. Zhang, Facile fabrication of superhydrophobic surface with nanowire structures on nickel foil. Appl. Surf. Sci. 287, 299–303 (2013)

    Article  CAS  Google Scholar 

  42. M.J. Deng, F.L. Huang, I.W. Sun, W.T. Tsai, J.K. Chang, An entirely electrochemical preparation of a nano-structured cobalt oxide electrode with superior redox activity. Nanotechnology 20, 175602–175607 (2009)

    Article  Google Scholar 

  43. X. Xia, J. Tu, Y. Mai, X. Wang, C. Gu, X. Zhao, Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. J. Mater. Chem. 21, 9319–9325 (2011)

    Article  CAS  Google Scholar 

  44. Y. Gao, S. Chen, D. Cao, G. Wang, J. Yin, Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. J. Power. Sources 195, 1757–1760 (2010)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (52064035), the Key Research and Development Program of Gansu Province (22YF7GA157), and the Natural Science Foundation of Zhejiang Province (LGG22E020003).

Author information

Authors and Affiliations

Authors

Contributions

FZ and YM guided all the experimental design, and led the manuscript preparation and revision work. TL and CW did most of the experiments, data analysis, and prepared the draft manuscript. All of the authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Fuliang Zhu or Yanshuang Meng.

Ethics declarations

Conflict of interest

All the authors do not have any possible conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Wang, C., Zhu, F. et al. Morphology control and capacitive performance of Co3O4 nanostructures synthesized by NH4F-assisted hydrothermal on Ni foam. J Mater Sci: Mater Electron 34, 2284 (2023). https://doi.org/10.1007/s10854-023-11661-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11661-7

Navigation