Skip to main content
Log in

Structural and magnetic influence by mg on BaFe10Al2O19 hexaferrites prepared via ceramic route for potential magnetic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cationic substitutions and sintering temperature both are crucial variables in modifying the structural and magnetic properties of M-type hexaferrites. The effect of the cationic substitutions on M-type BaFe10−xAl2MgxO19 hexaferrites is examined in the current work. An XRD analysis reveals that Fe2O3 phases are present as an impurity in all of the samples. Firstly, lattice parameters a and c show a decrease, then start increasing. The(Mr/Ms) ratio confines within a specific stable range. Morphology of the samples shows the uniform distribution of the particles throughout all the compositions.The anisotropy field-(Ha) and coercivity-(Hc) show an increase with increasing doping levels. The average grain size (D) grew continuously between 200 and 900 nm as the the doping content of Mg ascended. At a doping content of x = 0.05, the M type BaFe9.95Al2Mg0.05O19 hexaferrites shows the excellent magnetic characteristics having mB = 9.4098µB, Ms = 49.95 emu/g, Hc = 4.98 kOe, and Ha = 1.6kOe. The findings suggest that M-type hexagonal ferrite’s magnetic properties can be significantly enhanced by varying the cationic substitutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data are available on request from authors.

References

  1. F.F. Alharbi, S. Aman, N. Ahmad, S.R. Ejaz, R.Y. Khosa, S. Abbas, A.G. Abid, M.S. Al-Buriahi, Z.A. Alrowaili, M.S. Waheed, Eu–Co substituted Sr-hexaferrites for recording media and microwave devices. J. Mater. Sci.: Mater. Electron. 33(15), 12147–12156 (2022)

    CAS  Google Scholar 

  2. D. Baba Basha, N. Suresh Kumar, B. Chandra, K. Naidu, G. Ranjith Kumar, Structural, electrical, and magnetic properties of nano Sr1–XLaXFe12O19 (X = 0.2–0.8). Sci. Rep. 12(1), 12723 (2022)

    Article  CAS  Google Scholar 

  3. M. Ijaz, K. Albalawi, Uu.R. Ghori, E.A. Musad Saleh, M.M. Moharam, A.A. El-Zahhar, S.U. Asif, H. Ullah, Influence of ferromagnetic cobalt on microstructural and magnetic trends of sol–gel routed rare earth and aluminium based BaSr-Hexaferrites (Ba0.6Sr0.3Er0.1Fe11.5-xAl0.5CoxO19). Mater. Sci. Eng.: B 299, 116933 (2024)

    Article  CAS  Google Scholar 

  4. S.U. Asif, Q.A. Ranjha, U.--R. Ghori, M. Nisa, M.S. Ahmad, M. Bukhari, N. Jabeen, A. Hussain, N. Hassan, F. Ahmed, Exploring the structural and magnetic trends in Ba0.9Sm0.1Fe12–xAlxO19 M-type hexaferrites. Phys. Scr. 98(1), 015836 (2023)

    Article  Google Scholar 

  5. O. Ramanjaneyulu, N. Suresh Kumar, D. Baba Basha, K. Chandra Babu Naidu, Structural, thermal, magnetic, and electrical properties of Ba1-xCuxFe12O19 (x = 0.2–0.8) nanoparticles. J. Mater. Sci.: Mater. Electron. 34(5), 449 (2023)

    CAS  Google Scholar 

  6. Y. Wu, D. Lan, J. Ren, S. Zhang, A mini review of MOFs derived multifunctional absorbents: from perspective of components regulation. Mater. Today Phys. (2023). https://doi.org/10.1016/j.mtphys.2023.101178

    Article  Google Scholar 

  7. G. Zhang, J. Chen, Z. Zhang, M. Sun, Y. Yu, J. Wang, S. Cai, A novel parametric model for nonlinear hysteretic behaviours with strain-stiffening of magnetorheological gel composite. Compos. Struct. 318, 117082 (2023)

    Article  Google Scholar 

  8. L. Kong, G. Liu, Synchrotron-based infrared microspectroscopy under high pressure: an introduction. Matter. Radiat. Extrem. 6(6), 068202 (2021)

    Article  CAS  Google Scholar 

  9. Z. Jiao, Y. Wang, M. Wei, Q. Li, Z. Li, A. Sokolov, C. Yu, X. Jiang, C. Wu, Z. Lan, K. Sun, Z. Yu, V. Harris, Crystallographically textured and magnetic LaCu-substituted Ba-hexaferrite with excellent gyromagnetic properties. Materials 15, 8792 (2022)

    Article  CAS  Google Scholar 

  10. Q. Zhao, J. Liu, H. Yang, H. Liu, G. Zeng, B. Huang, High birefringence D-shaped germanium-doped photonic crystal fiber sensor. Micromachines. 13(6), 826 (2022)

    Article  Google Scholar 

  11. X. Zhang, Y. Tang, F. Zhang, C.S. Lee, A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6(11), 1502588 (2016)

    Article  Google Scholar 

  12. D. Lan, Y. Wang, Y. Wang, X. Zhu, H. Li, X. Guo, J. Ren, Z. Guo, G. Wu, Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J. Colloid Interface Sci. 651, 494–503 (2023)

    Article  CAS  Google Scholar 

  13. Y. Zheng, H. Zhao, Y. Cai, B. Jurado-Sánchez, R. Dong, Recent advances in one-dimensional micro/nanomotors: fabrication, propulsion and application. Nano-Micro Lett. 15(1), 20 (2023)

    Article  CAS  Google Scholar 

  14. H. Zhang, K. Sun, K. Sun, L. Chen, G. Wu, Core–shell Ni3Sn2@ C particles anchored on 3D N-doped porous carbon skeleton for modulated electromagnetic wave absorption. J. Mater. Sci. Technol. 158, 242–252 (2023)

    Article  Google Scholar 

  15. S. Mahmood, A. Aloqaily, Y. Maswadeh, A. Awadallah, I. Bsoul, M. Awawdeh, H. Juwhari, Effects of heat treatment on the phase evolution, structural, and magnetic properties of Mo–Zn Doped M-Type hexaferrites. Solid State Phenom. 232, 65–92 (2015)

    Article  Google Scholar 

  16. K.M.U. Rehman, X. Liu, M. Li, S. Jiang, Y. Wu, C. Zhang, C. Liu, X. Meng, H. Li, Synthesization and magnetic properties of Ba1–xYxFe12O19 hexaferrites prepared by solid-state reaction method. J. Magn. Magn. Mater. 426, 183–187 (2017)

    Article  CAS  Google Scholar 

  17. Y. Zou, J. Lin, W. Zhou, M. Yu, J. Deng, Z. Chen, G. Luo, D. Wang, Coexistence of high magnetic and dielectric properties in Ni–Zr co-doped barium hexaferrites. J. Alloys Compd. 907, 164516 (2022)

    Article  CAS  Google Scholar 

  18. L. Sun, Q. Zhu, Z. Jia, Z. Guo, W. Zhao, G. Wu, CrN attached multi-component carbon nanotube composites with superior electromagnetic wave absorption performance. Carbon. 208, 1–9 (2023)

    Article  CAS  Google Scholar 

  19. X. Cao, X. Liu, J. Zhu, Z. Jia, J. Liu, G. Wu, Optimal particle distribution induced interfacial polarization in hollow double-shell composites for electromagnetic waves absorption performance. J. Colloid Interface Sci. 634, 268–278 (2023)

    Article  CAS  Google Scholar 

  20. R.W. Chantrell, K. O’Grady, Magnetic characterization of recording media. J. Phys. D 25(1), 1–23 (1992)

    Article  CAS  Google Scholar 

  21. D.V. Singh, D.G. Kumar Bhargava, A. Kumar, R. Rai, M. Valente, K. Batoo, R.K. Kotnala, M. Singh, Structural, magnetic and Mössbauer study of BaLa Fe12O19 nanohexaferrites synthesized via sol–gel auto-combustion technique. Ceram. Int. 42, 5011–5017 (2016)

    Article  CAS  Google Scholar 

  22. L. Lechevallier, Le J. Breton, A. Morel, J. Teillet, Structural and magnetic properties of Sr1 – xSmxFe12O19 hexagonal ferrites synthesised by a ceramic process. J. Alloys Compd. 359(1–2), 310–314 (2003)

    Article  CAS  Google Scholar 

  23. B. Hamid, B. Want, Magnetic behaviour of neodymium-substituted strontium hexaferrite. Appl. Phys. A 122, 1–7 (2016)

    Google Scholar 

  24. Z. Zhou, Z. Wang, X. Wang, X. Wang, J. Zhang, F. Dou, M. Jin, J. Xu, Differences in the structure and magnetic properties of Sr1–xRExFe12O19 (RE: Pr and Dy) ferrites by microwave-assisted synthesis method. J. Alloys Compd. 610, 264–270 (2014)

    Article  CAS  Google Scholar 

  25. Z. Mosleh, P. Kameli, A. Poorbaferani, M. Ranjbar, H. Salamati, Structural, magnetic and microwave absorption properties of Ce-doped barium hexaferrite. J. Magn. Magn. Mater. 397, 101–107 (2016)

    Article  CAS  Google Scholar 

  26. A. Baykal, I.A. Auwal, S. Güner, H. Sözeri, Magnetic and optical properties of Zn2+ ion substituted barium hexaferrites. J. Magn. Magn. Mater. 430, 29–35 (2017)

    Article  CAS  Google Scholar 

  27. H.Z. Wang, Y.N. Hai, B. Yao, Y. Xu, L. Shan, L. Xu, J.L. Tang, Q.H. Wang, Tailoring structure and magnetic characteristics of strontium hexaferrite via Al Doping engineering. J. Magn. Magn. Mater. 422, 204–208 (2017)

    Article  CAS  Google Scholar 

  28. V.A. Turchenko, S.V. Trukhanov, A.M. Balagurov, V.G. Kostishyn, A.V. Trukhanov, L.V. Panina, E.L. Trukhanova, Features of crystal structure and dual ferroic properties of BaFe12-xMexO19 (me = In3+ and Ga3+; x = 0.1–1.2). J. Magn. Magn. Mater. 464, 139–147 (2018)

    Article  CAS  Google Scholar 

  29. P. Shen, J. Luo, Y. Zuo, Z. Yan, K. Zhang, Effect of La–Ni substitution on structural, magnetic and microwave absorption properties of barium ferrite. Ceram. Int. 43(6), 4846–4851 (2017)

    Article  CAS  Google Scholar 

  30. M.J. Iqbal, S. Farooq, Could binary mixture of Nd–Ni ions control the electrical behavior of strontium–barium M-type hexaferrite nanoparticles? Mater. Res. Bull. 46(5), 662–667 (2011)

    Article  CAS  Google Scholar 

  31. A. Grusková, J. Lipka, M. Papánová, J. Sláma, I. Tóth, D. Kevická, G. Mendoza, J. Corral, J. Šubrt, La–Zn substituted hexaferrites prepared by chemical method. Hyperfine Interact. 164(1), 27–33 (2005)

    Google Scholar 

  32. L. Peng, L. Li, R. Wang, Y. Hu, X. Tu, X. Zhong, Effect of La–Co substitution on the crystal structure and magnetic properties of low temperature sintered Sr1–xLaxFe12–xCoxO19 (x = 0–0.5) ferrites. J. Magn. Magn. Mater. 393, 399–403 (2015)

    Article  CAS  Google Scholar 

  33. Y.-M. Kang, K.-S. Moon, Magnetic properties of Ce–Mn substituted M-type Sr-hexaferrites. Ceram. Int. 41(10), 12828–12834 (2015)

    Article  CAS  Google Scholar 

  34. J. Li, H. Zhang, V. Harris, Y. Liao, Y. Liu, Ni–Ti equiatomic co-substitution of hexagonal M-type ba (NiTi) xFe12–2xO19 ferrites. J. Alloys Compd. 649, 782–787 (2015)

    Article  CAS  Google Scholar 

  35. R. Nazlan, I. Ismail, I.R. Ibrahim, F.M. Idris, M.A. Jusoh, K.A. Matori, Electromagnetic wave absorbing characteristics of C/Co-Mn and C/Co-Zn doped barium hexaferrite sandwiched nanocomposites. Int. J. Nanotechnol. 17(11–12), 757–767 (2020)

    Article  CAS  Google Scholar 

  36. S. Kanagesan, M. Hashim, T. Kalaivani, I. Ismail, N. Rodziah, I. Ibrahim, N. Rahman, Sintering temperature dependence of optimized microstructure formation of BaFe12O19 using sol–gel method. J. Mater. Sci.: Mater. Electron. 26, 1363–1367 (2015)

    CAS  Google Scholar 

  37. S.U. Asif, J. Wang, Y. Qian, D. Gao, R. Bashir, M.K. Bilal, J. Ahmad, M.Q. Awan, W. Hu, Phonon vibrations and photoluminescence emissions and their correlations with the electrical properties in Er3+ doped Bi3YO6 oxide-ion conductors. Solid State Ionics 344, 115092 (2020)

    Article  CAS  Google Scholar 

  38. G. Todkar, R. Kunale, R. Kamble, K.M. Batoo, M. Ijaz, A. Imran, M. Hadi, E. Raslan, S.E. Shirsath, R. Kadam, Ce–Dy substituted barium hexaferrite nanoparticles with large coercivity for permanent magnet and microwave absorber application. J. Phys. D 54(29), 294001 (2021)

    Article  CAS  Google Scholar 

  39. C. Liu, X. Kan, F. Hu, X. Liu, S. Feng, J. Hu, W. Wang, K.M.U. Rehman, M. Shezad, C. Zhang, H. Li, S. Zhou, Q. Wu, Investigations of Ce–Zn co-substitution on crystal structure and ferrimagnetic properties of M-type strontium hexaferrites Sr1–xCexFe12–xZnxO19 compounds. J. Alloys Compd. 785, 452–459 (2019)

    Article  CAS  Google Scholar 

  40. L.A. Trusov, E.A. Gorbachev, V.A. Lebedev, A.E. Sleptsova, I.V. Roslyakov, E.S. Kozlyakova, A.V. Vasiliev, R.E. Dinnebier, M. Jansen, P.E. Kazin, Ca–Al double-substituted strontium hexaferrites with giant coercivity. Chem. Commun. 54(5), 479–482 (2018)

    Article  CAS  Google Scholar 

  41. P. Chagas, L. Catique, V.C.C. Lira, A. Vega-Garcia, P. Marinho-Castellanos, J. Anglada-Riveira, Y. Leyet, R. Peña-Garcia, F. Guerrero, Effect of Sn-substitution on the electrical conductivity of SrFe12-xSnxO19 (0.0 ≤ x ≤ 1.0) hexaferrite. Phys. B: Condens. Matter. 661, 414961 (2023)

    Article  CAS  Google Scholar 

  42. Y. Chen, G. Wang, L. Song, X. Shen, J. Wang, J. Huo, R. Wang, T. Xu, S. Dai, Q. Nie, Unraveling the crystallization kinetics of supercooled liquid GeTe by ultrafast calorimetry. Cryst. Growth. Des. 17(7), 3687–3693 (2017)

    Article  CAS  Google Scholar 

  43. Y. Luo, J. Liu, H. Yang, H. Liu, G. Zeng, B. Huang, Enhanced circular dichroism by F-type chiral metal nanostructures, photonics (MDPI, Basel, 2023)

    Google Scholar 

  44. S.U. Asif, S. Rizwan, M.Q. Awan, M.W. Khan, I. Sadiq, M.E. Mazhar, A. Ahmad, S.S. Hussain, E.U. Khan, W. Hu, M.N. Ashiq, Effect of Dy–Co on physical and magnetic properties of X-type hexaferrites (Ba2–xDyxCu2Fe28–yCoyO46). Chin. J. Phys. 61, 47–54 (2019)

    Article  Google Scholar 

  45. W. Liu, Y. Zhao, Y. Zhang, C. Shuai, L. Chen, Z. Huang, H. Hou, Deformation-induced dynamic precipitation of 14H-LPSO structure and its effect on dynamic recrystallization in hot-extruded Mg–Y–Zn alloys. Int. J. Plast 164, 103573 (2023)

    Article  CAS  Google Scholar 

  46. Y. Lu, M. Stegmaier, P. Nukala, M.A. Giambra, S. Ferrari, A. Busacca, W.H. Pernice, R. Agarwal, Mixed-mode operation of hybrid phase-change nanophotonic circuits. Nano Lett. 17(1), 150–155 (2017)

    Article  CAS  Google Scholar 

  47. W. Kuang, H. Wang, X. Li, J. Zhang, Q. Zhou, Y. Zhao, Application of the thermodynamic extremal principle to diffusion-controlled phase transformations in Fe–CX alloys: modeling and applications. Acta Mater. 159, 16–30 (2018)

    Article  CAS  Google Scholar 

  48. Y. Zhao, Y. Sun, H. Hou, Core-shell structure nanoprecipitates in Fe-xCu-3.0 Mn-1.5 Ni-1.5 Al alloys: a phase field study. Prog. Natural Sci.: Mater. Int. 32(3), 358–368 (2022)

    Article  CAS  Google Scholar 

  49. V.S. Vinila, J. Isac, Chap. 14 - Synthesis and structural studies of superconducting perovskite GdBa2Ca3Cu4O10.5+δ nanosystems, in Design, fabrication, and characterization of multifunctional nanomaterials. ed. by S. Thomas, N. Kalarikkal, A.R. Abraham (Elsevier, Amsterdam, 2022), pp.319–341

    Chapter  Google Scholar 

  50. P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theoretical Appl. Phys. 8(4), 123–134 (2014)

    Article  Google Scholar 

  51. J.J. Vlassak, A model for chemical–mechanical polishing of a material surface based on contact mechanics. J. Mech. Phys. Solids. 52(4), 847–873 (2004)

    Article  CAS  Google Scholar 

  52. M.M. Barakat, D.E.-S. Bakeer, A.-H. Sakr, Structural, magnetic properties and electron paramagnetic resonance for BaFe12-xHgxO19 hexaferrite nanoparticles prepared by Co-precipitation method. J. Taibah Univ. Sci. 14(1), 640–652 (2020)

    Article  Google Scholar 

  53. T. Shintani, Y. Murata, Evaluation of the dislocation density and dislocation character in cold rolled type 304 steel determined by profile analysis of X-ray diffraction. Acta Mater. 59(11), 4314–4322 (2011)

    Article  CAS  Google Scholar 

  54. M.E. Mazhar, S. Bakhtawar, A. Rana, M. Nauman Usmani, N. Akhtar, W. Abbas, K. Khan, J. Ahmad, Insight into the structural characterization of pure and Zr-doped hydrothermally synthesized cerium oxide nanoparticles. Mater. Res. Exp. 6(10), 105022 (2019)

    Article  CAS  Google Scholar 

  55. K. Wang, J. Zhu, H. Wang, K. Yang, Y. Zhu, Y. Qing, Z. Ma, L. Gao, Y. Liu, S. Wei, Air plasma-sprayed high-entropy (Y0. 2Yb0. 2Lu0. 2Eu0. 2Er0. 2) 3Al5O12 coating with high thermal protection performance. J. Adv. Ceram. 11(10), 1571–1582 (2022)

    Article  Google Scholar 

  56. Y. ZHAO, J. JING, L. CHEN, F. XU, H. HOU, Current research status of interface of ceramic-metal laminated composite material for armor protection. Acta Metall. Sin. 57(9), 1107–1125 (2021)

    CAS  Google Scholar 

  57. S. Zhu, J. Zhu, S. Ye, K. Yang, M. Li, H. Wang, J. He, High-entropy rare earth titanates with low thermal conductivity designed by lattice distortion. J. Am. Ceram. Soc. 106(10), 6279–6291 (2023)

    Article  CAS  Google Scholar 

  58. P. Zhao, J. Zhu, K. Yang, M. Li, G. Shao, H. Lu, Z. Ma, H. Wang, J. He, Outstanding wear resistance of plasma sprayed high-entropy monoboride composite coating by inducing phase structural cooperative mechanism. Appl. Surf. Sci. 616, 156516 (2023)

    Article  CAS  Google Scholar 

  59. S. Mahmood, I. Bsoul, Tuning the magnetic properties of M-type hexaferrites. 2017

  60. M. Shezad, X. Liu, S. Feng, X. Kan, W. Wang, C. Liu, T.J. Shehzad, K.M.U. Rehman, Characterizations analysis of magneto-structural transitions in Ce–Co doped SrM based nano Sr1–xCexFe12–xCoxO19 hexaferrite crystallites prepared by ceramic route. J. Magn. Magn. Mater. 497, 166013 (2020)

    Article  CAS  Google Scholar 

  61. S. Mahmood, I. Bsoul, Tuning the magnetic properties of M-type hexaferrites. 2018; pp 49–100

  62. L. Zhang, D. Xiong, Z. Su, J. Li, L. Yin, Z. Yao, G. Wang, L. Zhang, H. Zhang, Molecular dynamics simulation and experimental study of tin growth in SAC lead-free microsolder joints under thermo-mechanical-electrical coupling. Mater. Today Commun. 33, 104301 (2022)

    Article  CAS  Google Scholar 

  63. J. Zhang, X. Wang, L. Zhou, G. Liu, D.T. Adroja, da I. Silva, F. Demmel, D. Khalyavin, J. Sannigrahi, H.S. Nair, A ferrotoroidic candidate with well-separated spin chains. Adv. Mater. 34(12), 2106728 (2022)

    Article  CAS  Google Scholar 

  64. A. Trukhanov, L. Panina, S. Trukhanov, V. Turchenko, I. Kazakevich, M. Salem, Features of crystal structure and magnetic properties of M-type Ba-hexaferrites with diamagnetic substitution. Int. J. Mater. Chem. Phys. 1, 286–294 (2015)

    Google Scholar 

  65. C. Zhao, C.F. Cheung, P. Xu, High-efficiency sub-microscale uncertainty measurement method using pattern recognition. ISA Trans. 101, 503–514 (2020)

    Article  Google Scholar 

  66. J. Shi, B. Zhao, T. He, L. Tu, X. Lu, H. Xu, Tribology and dynamic characteristics of textured journal-thrust coupled bearing considering thermal and pressure coupled effects. Tribol. Int. 180, 108292 (2023)

    Article  Google Scholar 

  67. M.R. Rehman, M.A. Akram, I.H. Gul, Improved electrical properties of strontium hexaferrite nanoparticles by Co2+ substitutions. ACS Omega 7(48), 43432–43439 (2022)

    Article  CAS  Google Scholar 

  68. A. Makhdoom, Q. Ranjha, U.-R. Ghori, M. Raza, B. Raza, M.E. Mazhar, K. Rao, F. Ahmed, S.U. Asif, M. Khan, M. Nisa, Structural and magnetic variations in Ba 0.5 Sr 0.5 Fe9Ce1 Al2O19 hexaferrites at different sintering temperatures. Physica Scripta 96, 125865 (2021)

    Article  Google Scholar 

  69. A.R. Makhdoom, F. Ahmed, Uu.R. Ghori, Q.A. Ranjha, K.A. Rao, A. Javed, M.E. Mazhar, M. Bukhari, A. Maqsood, S.U. Asif, M.W. Khan, Tuning magnetic properties in the Ce–Al Co-substituted M-type BaSr (6:4) hexaferrites. J. Mater. Sci.: Mater. Electron. 33(9), 7266–7274 (2022)

    CAS  Google Scholar 

  70. J. Lee, E.J. Lee, T.-Y. Hwang, J. Kim, Y.-H. Choa, Anisotropic characteristics and improved magnetic performance of Ca–La–Co-substituted strontium hexaferrite nanomagnets. Sci. Rep. 10(1), 15929 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Deanship of Scientific Research at King Khalid University for funding this work through a large group Research Project under Grant Number RGP2/236/44.

Funding

Funding was supported by Deanship of Scientific Research at King Khalid University for funding this work through a large group Research Project under Grant Number (RGP2/236/44).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to this work. SUA, and FA, gave the idea. MA, synthesized material, SUA, FA, FAI, MMH, EAMS, and MSH analyzed the data. EAA, and URG, formatted the initial draft. The manuscript was written through the contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Sana Ullah Asif or Fahim Ahmed.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asif, S.U., Ghori, UuR., Ahsan, M. et al. Structural and magnetic influence by mg on BaFe10Al2O19 hexaferrites prepared via ceramic route for potential magnetic applications. J Mater Sci: Mater Electron 34, 2211 (2023). https://doi.org/10.1007/s10854-023-11645-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11645-7

Navigation