Skip to main content
Log in

Fabrication of coal flyash supported ZnMoO4 nanoplates for photocatalytic and self-cleaning applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The health danger generated by dye and textile industries contaminants are of the utmost carcinogenic nature and they pose a hazard to aquatic biota and humans. To resolve this issue, different heterostructure nanomaterials with various probable have been proposed. Among these heterostructures, novel porous 3 wt% Flyash/metal oxides with unique physical, chemical and biological properties, have attracted excessive attention for the degradation of organic dyes from dissimilar solutions. In this research, a new heterostructure of 3 wt% Flyash/ZnMoO4 was successfully synthesized through a fast, simple, and cost-effective hydrothermal technique. The FE–SEM analysis confirms that Flyash/ZnMoO4 structure as nanoplate like microporous structures. HR-TEM study exposed that the synthesized nanomaterial structure was spherical and hexagonal and the particle size (Average size) was well uniformed. Flyash/ZnMoO4 has a higher surface area value (28.65 m2 g−1) than ZnMoO4 (12.42 m2 g−1). The results of the reusability examination exposed that the prepared heterocatalyst was reusable with a degradation efficiency of 96% even after four successive cycles. Moreover, it is recommended and concluded that Flyash/ZnMoO4 prepared from the green hydrothermal method should be the finest economic alternative for textile and dye effluent treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the Corresponding author upon reasonable request.

References

  1. Y. Wang, Solar photoctalytic degradation of eight commercial dyes in TiO2 suspension. Water Res. 34(3), 990–994 (2000)

    Article  CAS  Google Scholar 

  2. S. Sakthivel, B. Neppolian, M. Palanichamy, B. Arabindoo, V. Murugesan, Photocatalytic degradation of leather dye over ZnO catalyst supported on alumina and glass surface. Water Sci. Technol. 44(5), 211–218 (2001)

    Article  CAS  Google Scholar 

  3. Y.L. Fang, Z.Y. Li, S. Xu, D.D. Han, D.Y. Lu, Optical properties and photocatalytic activities of spherical ZnO and flower-like ZnO structures synthesized by facile hydrothermal method. J. Alloys Compd. 575, 359–363 (2013)

    Article  CAS  Google Scholar 

  4. S. Yuyang, J. Long, Z. Tian, W. Jin, L. Ling, J. Yong, J. Zhifeng, S. Xiaosong, Synthesis of Au–ZnO hybrid nanostructure arrays and their enhanced photocatalytic activity. New J. Chem. 39, 2943–2948 (2015)

    Article  Google Scholar 

  5. S.G. Kumar, K.S.R.K. Rao, Zinc oxide based photocatalysis: tailoring surface bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 5, 3306–3351 (2015)

    Article  CAS  Google Scholar 

  6. N.Z. Muradov, T.N. Veziroglu, “Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies. Int. J. Hydrogen Energy 33, 68046839 (2008)

    Article  Google Scholar 

  7. M.A. Al-Ghouti, M.A.M. Khraisheh, S.J. Allen, M.N. Ahmad, The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J. Environ. Manag. 69, 229–238 (2003)

    Article  CAS  Google Scholar 

  8. L. Zhou, C. Gao, W.J. Xu, Magnetic dendritic materials for highly efficient adsorption of dyes and drugs. ACS Appl. Mater. Interfaces 2, 1483–1491 (2010)

    Article  CAS  Google Scholar 

  9. S. Qadri, A. Ganoe, Y. Haik, Removal and recovery of acridine orange from solutions by use of magnetic nanoparticles. J. Hazard. Mater. 169, 318–323 (2009)

    Article  CAS  Google Scholar 

  10. S. Cho, J.W. Jang, J. Kim, J.S. Lee, W. Choi, K.H. Lee, Three- dimensional type II ZnO/ZnSe heterostructures and their visible light photocatalytic activities. Langmuir 27, 10243–10250 (2011)

    Article  CAS  Google Scholar 

  11. N. Wetchakun, S. Chaiwichain, B. Inceesungvorn, K. Pingmuang, S. Phanichphant, A.I. Minett, J. Chen, BiVO4/CeO2 nanocomposites with high visible-light induced photocatalytic activity. ACS Appl. Mater. Interfaces 4, 3718–3723 (2012)

    Article  CAS  Google Scholar 

  12. G. Rajesh, P.S. Kumar, S. Akilandeswari, R. Gayathri, A. Mandal, V.U. Shankar, M. Ramya, K. Nirmala, K. Thirumalai, A synergistic consequence of catalyst dosage, pH solution and reactive species of Fe-doped CdAl2O4 nanoparticles on the degradation of toxic environmental pollutants. Chemosphere 318, 137919–137931 (2023)

    Article  CAS  Google Scholar 

  13. C.F. Lin, C.H. Wu, Z.N. Onn, Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 systems. J. Hazard. Mater. 154, 1033–1039 (2008)

    Article  CAS  Google Scholar 

  14. S. Balachandran, M. Swaminathan, Facile fabrication of heterostructured Bi2O3–ZnO photocatalyst and its enhanced photocatalytic activity. J. Phys. Chem. C 116, 26306–26312 (2012)

    Article  CAS  Google Scholar 

  15. K. Thirumalai, S. Balachandran, M. Shanthi, M. Swaminathan, Heterostructured dysprosium vanadate—ZnO for photo-electrocatalytic and self-cleaning applications. Mater. Sci. Semicond. Process. 71, 84–92 (2017)

    Article  CAS  Google Scholar 

  16. K. Thirumalai, M. Shanthi, M. Swaminathan, Hydrothermal fabrication of natural sun light active Dy2WO6 doped ZnO and its enhanced photoelectrocatalytic activity and self-cleaning properties. RSC Adv. 7, 7509–7518 (2017)

    Article  CAS  Google Scholar 

  17. L. Andronic, A. Enesca, C. Vladuta, A. Duta, Photocatalytic activity of cadmium doped TiO2 films for photocatalytic degradation of dyes. Chem. Eng. J. 152, 64–71 (2009)

    Article  CAS  Google Scholar 

  18. V. Eskizeybek, F. Sari, H. Gülce, A. Avci, Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl. Catal. B 119–120, 197–206 (2012)

    Article  Google Scholar 

  19. Z. Fan, F. Meng, M. Zhang, Z. Wu, Z. Sun, A. Li, Solvothermal synthesis of hierarchical TiO2 nanostructures with tunable morphology and enhanced photocatalytic activity. Appl. Surf. Sci. 360, 298–305 (2016)

    Article  CAS  Google Scholar 

  20. F. Meng, Z. Sun, A mechanism for enhanced hydrophilicity of silver nanoparticles modified TiO2 thin films deposited by RF magnetron sputtering. Appl. Surf. Sci. 255(13–14), 6715–6720 (2009)

    Article  CAS  Google Scholar 

  21. F. Meng, L. Wang, J. Cui, Controllable synthesis and optical properties of nano-CeO2 via a facile hydrothermal route. J. Alloys Compd. 556, 102–108 (2013)

    Article  CAS  Google Scholar 

  22. L. Wang, F. Meng, Oxygen vacancy and Ce3+ ion dependent magnetism of monocrystal CeO2 nanopoles synthesized by a facile hydrothermal method. Mater. Res. Bull. 48, 3492–3498 (2013)

    Article  CAS  Google Scholar 

  23. F. Meng, Z. Fan, C. Zhang, Y. Hu, T. Guan, A. Li, Morphology-controlled synthesis of CeO2 microstructures and their room temperature ferromagnetism. J. Mater. Sci. Technol. 33, 444–451 (2017)

    Article  CAS  Google Scholar 

  24. L. Wang, F. Meng, K. Li, F. Lu, Characterization and optical properties of pole-like nano-CeO2 synthesized by a facile hydrothermal method. Appl. Surf. Sci. 286, 269–274 (2013)

    Article  CAS  Google Scholar 

  25. N. Bate, H. Shi, L. Chen, J. Wang, S. Xu, W. Chen, J. Li, E.-B. Wang, Micelle-directing synthesis of ag-doped WO3 and MoO3 composites for photocatalytic water oxidation and organic-dye adsorption. Chem. Asian J. 12, 2597–2603 (2017)

    Article  CAS  Google Scholar 

  26. B. Ma, D. Li, X. Wang, K. Lin, Molybdenum-based co-catalysts in photocatalytic hydrogen production: categories, structures, and roles. Chemsuschem 22, 3871–3881 (2018)

    Article  Google Scholar 

  27. Y. Shi, Y. Wang, J.I. Wong, A.Y.S. Tan, C.-L. Hsu, L.-J. Li, Y.-C. Lu, H.Y. Yang, Self-assembly of hierarchical MoSx/CNT nanocomposites (2< x< 3): towards high performance anode materials for lithium ion batteries. Sci. Rep. 3, 2169 (2013)

    Article  Google Scholar 

  28. X. Ju, X. Li, W. Li, W. Yang, C. Tao, Luminescence properties of ZnMoO4: Tb3+ green phosphor prepared via co-precipitation. Mater. Lett. 65, 2642–2644 (2011)

    Article  CAS  Google Scholar 

  29. A. Xie, X. Yuvan, Wang F Shi, Muz, enhanced red emission in ZnMoO4: Eu3+ by charge compensation. J. Phys. D 43, 55101 (2010)

    Article  Google Scholar 

  30. W. Zhao, W. Ma, C. Chen, J. Zhao, Z. Shuai, Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation. J. Am. Chem. Soc. 126, 4782–4783 (2004)

    Article  CAS  Google Scholar 

  31. B. Yu, Y. Wu, F. Meng, Q. Wang, X. Jia, M.W. Khan, C. Huang, S. Zhang, L. Yang, H. Wu, Formation of hierarchical Bi2MoO6/ln2S3 S-scheme heterojunction with rich oxygen vacancies for boosting photocatalytic CO2 reduction. Chem. Eng. J. 429, 132456 (2022)

    Article  CAS  Google Scholar 

  32. S.R. Kadam, R.P. Panmand, S. Tekale, S. Khore, C. Terashima, S.W. Gosavi, A. Fujishima, B.B. Kale, Hierarchical CdMoO4 nanowire–graphene composite for photocatalytic hydrogen generation under natural sunlight. RSC Adv. 8, 13764–13771 (2018)

    Article  CAS  Google Scholar 

  33. M.R.D. Bomio, R.L. Tranquilin, F.V. Motta, C.A. Paskocimas, R.M. Nascimento, L. Gracia, J. Andres, E. Longo, Toward understanding the photocatalytic activity of PbMoO4 powders with predominant (111), (100), (011), and (110) facets. A combined experimental and theoretical study. J. Phys. Chem. C 117, 21382–21395 (2013)

    Article  CAS  Google Scholar 

  34. W. Tanab, J. Luan, Investigation into the synthesis conditions of CuMoO4 by an insitu method and its photocatalytic properties under visible light irradiation. RSC Adv. 10, 9745–9759 (2020)

    Article  Google Scholar 

  35. L. Warmuth, C. Ritschel, C. Feldmann, Facet-, composition- and wavelength-dependent photocatalysis of Ag2MoO4. RSC Adv. 10, 18377–18383 (2020)

    Article  CAS  Google Scholar 

  36. C.T. Cherian, M.V. Reddy, S.C. Haurand, B.V.R. Chowdari, Interconnected network of CoMoO4 submicrometer particles as high capacity anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 5, 918–923 (2013)

    Article  CAS  Google Scholar 

  37. R. Karthik, J.V. Kumar, S.-M. Chen, C. Karuppiah, Y.-H. Cheng, V. Muthuraj, A study of electrocatalytic and photocatalytic activity of cerium molybdate nanocubes decorated graphene oxide for the sensing and degradation of antibiotic drug chloramphenicol. ACS Appl. Mater. Interfaces 9, 6547–6559 (2017)

    Article  CAS  Google Scholar 

  38. A.M. Kaczmarek, R.V. Deun, Rare earth tungstate and molybdate compounds—from 0D to 3D architectures. Chem. Soc. Rev. 42, 8835–8848 (2013)

    Article  CAS  Google Scholar 

  39. Y. Liang, P. Liu, H.B. Li, G.W. Yang, ZnMoO4 micro- and nanostructures synthesized by electrochemistry-assisted laser ablation in liquids and their optical properties. Cryst. Growth Des. 12, 4487–4493 (2012)

    Article  CAS  Google Scholar 

  40. A.M.E.S. Raj, C. Mallika, K. Swaminathan, O.M. Sreedharan, K.S. Nagarajan, Zinc (II) oxide-zinc (II) molybdate composite humidity sensor. Sens. Actuators B 81, 229–236 (2002)

    Article  Google Scholar 

  41. N.N. Leyzerovich, K.G. Bramnik, T. Buhrmester, H. Ehrenberg, H. Fuess, Electrochemical intercalation of lithium in ternary metal molybdates MMoO4 (M: Cu, Zn, Ni and Fe). J. Power. Sources 127, 76–84 (2004)

    Article  CAS  Google Scholar 

  42. D. Spassky, A. Vasilev, I. Kamenskikh, V. Kolobanov, V. Mikhailin et al., Luminescence investigation of zinc molybdate single crystals. Phys. Stat. Sol. A 206, 1579–1583 (2009)

    CAS  Google Scholar 

  43. B.D. Amo, R. Romagnoli, V.F. Vetere, Performance of zinc molybdenum phosphate in anticorrosive paints by accelerated and electrochemical tests. J. Appl. Electro Chem. 29, 1401–1407 (1999)

    Article  Google Scholar 

  44. P. Thy, B.M. Jenkins, S. Grundvig, R. Shiraki, C.E. Lesher, High temperature elemental losses and mineralogical changes in common biomass ashes. Fuel 85, 783–795 (2006)

    Article  CAS  Google Scholar 

  45. S.V. Vassilev, D. Baxter, L.K. Andersen, C.G. Vassileva, An overview of the chemical composition of biomass. Fuel 89, 913–933 (2010)

    Article  CAS  Google Scholar 

  46. P.T. Lum, K.Y. Foo, N.A. Zakaria, P. Palaniandy, Ash based nanocomposites for photocatalytic degradation of textile dye pollutants: a review. Mater. Chem. Phys. 241, 122405 (2020)

    Article  CAS  Google Scholar 

  47. S.M.H. Asl, A. Ghadi, M.S. Baei, H. Javadian, M. Maghsud, Porous adsorbents derived from coal fly ash as cost-effective and environmentally-friendly sources of aluminosilicate for sequestration of aqueous and gaseous pollutants: a review. J. Clean. Prod. 208, 1131–1147 (2019)

    Article  Google Scholar 

  48. F. Mushtaq, M. Zahid, I.A. Bhatti, S. Nasir, T. Hussain, Possible applications of coal fly ash in waste water treatment. J. Environ. Manag. 240, 27–46 (2019)

    Article  CAS  Google Scholar 

  49. N. Nadeem, M. Zahid, Z.A. Rehan, M.A. Hanif, M. Yaseen, Improved photocatalytic degradation of dye using coal fly ash-based zinc ferrite (CFA/ZnFe2O4) composite. Int. J. Environ. Sci. Technol. 19, 3045–3060 (2021)

    Article  Google Scholar 

  50. K. Thirumalai, S. Balachandran, M. Swaminathan, Superior photocatalytic, electrocatalytic, and self-cleaning applications of Fly ash supported ZnO nanorods. Mater. Chem. Phys. 183, 191–200 (2016)

    Article  CAS  Google Scholar 

  51. A. Duta, M. Visa, Simultaneous removal of two industrial dyes by adsorption and photocatalysis on a fly-ash–TiO2 composite. J. Photochem. Photobiol., A 306, 21–30 (2015)

    Article  CAS  Google Scholar 

  52. L. Lin, M. Huang, L. Long, D. Chen, Novel photocatalysts of fly ash cenospheres supported BiOBr hierarchical microspheres with high photocatalytic performance. J. Alloys Compd. 615, 929–932 (2014)

    Article  CAS  Google Scholar 

  53. J. Zhang, H. Cui, B. Wang, C. Li, J. Zhai, Q. Li, Fly ash cenospheres supported visible light-driven BiVO4 photocatalyst: synthesis, characterization and photocatalytic application. Chem. Eng. J. 223, 737–746 (2013)

    Article  CAS  Google Scholar 

  54. Y.J. Zhang, P.Y. He, Y.X. Zhang, H. Chen, A novel electroconductive graphene/fly ash-based geopolymer composite and its photocatalytic performance. Chem. Eng. J. 334, 2459–2466 (2018)

    Article  CAS  Google Scholar 

  55. E.C. Umejuru, E. Prabakaran, K. Pillay, Coal fly ash decorated with graphene oxide−tungsten oxide nanocomposite for rapid removal of Pb2+ ions and reuse of spent adsorbent for photocatalytic degradation of acetaminophen. ACS Omega 6, 11155–11172 (2021)

    Article  CAS  Google Scholar 

  56. J. Zhu, J. Xie, X. Lu, D. Jiang, Synthesis and characterization of superhydrophobic silica and silica/titania aerogels by sol–gel method at ambient pressure. Colloids Surf. A 342, 97–101 (2009)

    Article  CAS  Google Scholar 

  57. S. Balachandran, K. Thirumalai, M. Swaminathan, Facile hydrothermal synthesis of a highly efficient solar active Pr6O11–ZnO photocatalyst and its multiple applications. RSC Adv. 4, 27642–27653 (2014)

    Article  CAS  Google Scholar 

  58. K. Thirumalai, E.T.D. Kumar, R. Aravindhan, J.R. Rao, M. Swaminathan, Hierarchically structured bentonite loaded Bi2O3-ZnO and its multiple applications. Surf. Interfaces 5, 30–38 (2016)

    Article  CAS  Google Scholar 

  59. H.O. Hassani, S. Rakass, M. Abboudi, A. Mohmoud, F.A. Wadaani, Preparation and characterization of α-Zinc molybdate catalyst: efficient sorbent for methylene blue and reduction of 3-nitrophenol. Molecules 23, 1462–1476 (2018)

    Article  Google Scholar 

  60. M. Ramezani, S.M.H. Mashkani, A.S. Nasab, H.G. Estarki, Synthesis, characterization, and morphological control of ZnMoO4 nanostructures through precipitation method and its photocatalyst application. J. Mater. Sci. Mater. Electron. 26, 7588–7594 (2015)

    Article  CAS  Google Scholar 

  61. S. Aghdasi, M. Shokri, Photocatalytic degradation of ciprofloxacin in the presence of synthesized ZnO nanocatalyst: the effect of operational parameters. Iran. J. catal. 6(5), 481–487 (2016)

    CAS  Google Scholar 

  62. B. Subash, B. Krishnakumar, R. Velmurugan, M. Swaminathan, M. Shanthi, Synthesis of Ce co-doped Ag–ZnO photocatalyst with excellent performance for NBB dye degradation under natural sunlight illumination, Catal. Sci. Technol. 2, 2319–2326 (2012)

    CAS  Google Scholar 

  63. Y. Liu, Q. Zhang, M. Xu, H. Yuan, Y. Chen, J. Zhang, K. Luo, J. Zhang, B. You, Novel and efficient synthesis of Ag-ZnO nanoparticles for the sunlight-induced photocatalytic degradation. Appl. Surf. Sci. 476, 632–640 (2019)

    Article  CAS  Google Scholar 

  64. B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi, Highly efficient, solar active and reusable photocatalyst, Zr loaded Ag-ZnO for reactive red 120 dye degradation with synergistic effect and dye sensitized mechanism. Langmuir 29, 939–949 (2013)

    Article  CAS  Google Scholar 

  65. Y. Liu, Z.H. Yang, P.P. Song, R. Xu, H. Wang, Facile synthesis of Bi2MoO6/ZnSnO3 heterojunction with enhanced visible light photocatalytic degradation of methylene blue. Appl. Surf. Sci. 430, 561–570 (2018)

    Article  CAS  Google Scholar 

  66. L. Lv, W. Tong, Y. Zhang, Y. Su, X. Wang, Metastable monoclinic ZnMoO4: hydrothermal synthesis, optical properties and photocatalytic performance. J. Nanosci. Nanotechnol. 11, 9506–9512 (2011)

    Article  CAS  Google Scholar 

  67. M. Visa, C. Bogatu, A. Duta, Tungsten oxide—fly ash oxide composites in adsorption and photocatalysis. J. Hazard. Mater. 289, 244–256 (2015)

    Article  CAS  Google Scholar 

  68. M. Banik, P. Chakrabarty, A. Das, S.K. Ray, R. Mukherjee, Colloidal transfer printing-mediated fabrication of zinc oxide nanorods for self-cleaning applications. Adv. Mater. Interfaces 1900063, 1–9 (2019)

    Google Scholar 

  69. A. Milionis, A. Tripathy, M. Donati, C.S. Sharma, F. Pan, K.M. Weber, Q. Ren, D. Poulikakos, Water-based scalable methods for self cleaning antibacterial ZnO nanostructured surfaces. Ind. Eng. Chem. Res. 59, 14323–14333 (2020)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received for this work.

Author information

Authors and Affiliations

Authors

Contributions

KK: Data curation, methodology, materials preparation, characterization, writing—original draft. KR: Conceptualization, writing—review and editing, supervision, resources.

Corresponding author

Correspondence to Kumar Rajathi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalpana, K., Rajathi, K. Fabrication of coal flyash supported ZnMoO4 nanoplates for photocatalytic and self-cleaning applications. J Mater Sci: Mater Electron 34, 2251 (2023). https://doi.org/10.1007/s10854-023-11630-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11630-0

Navigation