Skip to main content
Log in

Effect of annealing atmosphere on structure and photoluminescence of ZnMgO thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to deeply understand the effect of annealing atmosphere on the structure and luminescence performance of ZnMgO films, self-made targets were used to prepare Mg incorporated ZnO thin films on quartz glass substrates in a nitrogen atmosphere at 400 °C using pulsed laser deposition (PLD) method. The prepared ZnMgO films were subsequently annealed in air and vacuum atmospheres at 500 °C, respectively. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS) were used to analyze the structure, morphology, elemental composition and chemical state of the film. The photoluminescence (PL) spectra were measured using a fluorescence spectrophotometer. The results revealed that both the as-prepared and annealed samples exhibited a hexagonal wurtzite structure with the (002) orientation. However, the annealed samples show different degrees of secondary orientation growth (SOG) due to the influence of annealing oxygen pressure. After air annealing, the SOG is more pronounced, resulting in larger grain size and a stronger (002) diffraction peak. After air annealing, the films were more prone to forming oxygen interstitials (Oi), while vacuum annealing favored the formation of zinc interstitials (Zni). The PL spectrum shows a strong ultraviolet emission peak (372–385 nm) and a weak red emission peak (730–760 nm), and the mechanisms behind these two emission peaks are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. N. Siregar, J.H. Motlan, M. Panggabean, J. Sirait, N.S. Rajagukguk, F.K. Gultom, Sabir, Int. J. Photoenergy (2021). https://doi.org/10.1155/2021/4033692

    Article  Google Scholar 

  2. B. Kim, D. Lee, B. Hwang, D.J. Kim, C.K. Kim, Mol. Cryst. Liq. Cryst. 735, 61–74 (2022)

    Article  CAS  Google Scholar 

  3. Q. Lin, F. Zhang, N. Zhao, P. Yang, Micromachines 13, 296 (2022)

    Article  Google Scholar 

  4. Y. Wang, J. Song, H. Zhang, X. Zhang, G. Zheng, J. Xue, B. Han, X. Meng, F. Yang, J. Li, J. Alloys Compd. 822, 153688 (2020)

    Article  CAS  Google Scholar 

  5. F.H. Wang, M.S. Chen, Y.L. Jiang, H.W. Liu, T.K. Kang, J. Alloys Compd. 897, 163174 (2022)

    Article  CAS  Google Scholar 

  6. M.R. Vaezi, A. Shokuhfar, S.K. Sadrnezhaad, T. Shokuhfar, Int. J. Nanomanuf. 2, 59–69 (2008)

    Article  CAS  Google Scholar 

  7. G. Gottardi, R. Pandiyan, V. Micheli, G. Pepponi, S. Gennaro, R. Bartali, N. Laidani, Mater. Sci. Eng. B 178, 609–616 (2013)

    Article  CAS  Google Scholar 

  8. V. Dalouji, N. Rahimi, S.H. Elahi, Mol. Cryst. Liq. Cryst. 758, 11–24 (2023)

    Article  CAS  Google Scholar 

  9. Y. Zhang, Y. Liu, L. Wu, H. Li, L. Han, B. Wang, E. Xie, Appl. Surf. Sci. 255, 4801–4805 (2009)

    Article  CAS  Google Scholar 

  10. M. Baradaran, F.E. Ghodsi, C. Bittencourt, E. Llobet, J. Alloys Compd. 788, 289–301 (2019)

    Article  CAS  Google Scholar 

  11. S. Shi, J. Xu, L. Li, Mater. Lett. 229, 178–181 (2018)

    Article  CAS  Google Scholar 

  12. X. Long, X. Li, P.T. Lin, X.W. Cheng, Y. Liu, C.B. Cao, Chin. Phys. B 19, 027202 (2010)

    Article  Google Scholar 

  13. H. Zhang, W. Li, G. Qin, H. Ruan, Z. Huang, F. Wu, C. Kong, L. Fang, Appl. Surf. Sci. 492, 392–398 (2019)

    Article  CAS  Google Scholar 

  14. X. Li, Y. Wang, W. Liu, G. Jiang, C. Zhu, Mater. Lett. 85, 25–28 (2012)

    Article  CAS  Google Scholar 

  15. N. Tu, B.H. Van, D. Trung, A.T. Duong, D. Thuy, D. Nguyen, K. Nguyen, P. Huy, J. Alloys Compd. 791, 722–729 (2019)

    Article  CAS  Google Scholar 

  16. M. Bedrouni, B. Kharroubi, A. Ouerdane, M. Bouslama, M. Guezzoul, Y. Caudano, K.B. Bensassi, M. Bousmaha, M.A. Bezzerrouk, A. Mokadem, M. Abdelkrim, Opt. Mater. 111, 110560 (2021)

    Article  CAS  Google Scholar 

  17. V.V. Kutwade, K.P. Gattu, A.S. Dive, M.E. Sonawane, D.A. Tonpe, R. Sharma, J. Mater, Sci.-Mater. El. 32, 6475–6486 (2021)

    Article  CAS  Google Scholar 

  18. V.P. Singh, C. Rsth, RSC Adv. 5, 44390–44397 (2015)

    Article  CAS  Google Scholar 

  19. H.W. Fang, J.Y. Juang, S.J. Liu, Int. J. Nanotechnol. 14, 992–1000 (2017)

    Article  CAS  Google Scholar 

  20. B. Panigrahy, M. Aslam, D.S. Misra, M. Ghosh, D. Bahadur, Adv. Funct. Mater. 20, 1161–1165 (2010)

    Article  CAS  Google Scholar 

  21. F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, T. Uyar, Nanoscale 6, 10224–10234 (2014)

    Article  CAS  Google Scholar 

  22. C. He, H.Y. Liu, J. Luo, W.J. Deng, R.G. Zhang, Y. Chen, J. Synth. Cryst. 51, 2071–2079 (2022)

    CAS  Google Scholar 

  23. F. Lekoui, S. Hassani, M. Ouchabane, H. Akkari, D. Dergham, W. Filali, E. Garoudja, Brazil. J. Phys. 51, 544–552 (2021)

    Article  CAS  Google Scholar 

  24. A. Goktas, A. Tumbul, Z. Aba, M. Durgun, Thin Solid Films 680, 20–30 (2019)

    Article  CAS  Google Scholar 

  25. V. Gupta, A. Mansingh, J. Appl. Phys. 80, 1063–1073 (1996)

    Article  CAS  Google Scholar 

  26. X.J. Liu, C. Song, F. Zeng, X.B. Wang, F. Pan, J. Phys. D 40, 1608–1013 (2007)

    Article  CAS  Google Scholar 

  27. C.J. Gawlak, C.R. Aita, J. Vac. Sci. Technol. A 1, 415–418 (1983)

    Article  CAS  Google Scholar 

  28. H.J. Lee, C.Y. Chou, Z. Bi, C.F. Tsai, H. Wang, Nanotechnology 20, 395704 (2009)

    Article  Google Scholar 

  29. P.R. Chithira, T.T. John, J. Magn. Magn. Mater. 496, 165928 (2020)

    Article  CAS  Google Scholar 

  30. H. Pan, Y. Zhang, Y. Hu, H. Xie, Optik 208, 164560 (2020)

    Article  CAS  Google Scholar 

  31. M. Abdelkrim, M. Guezzoul, M. Bedrouni, M. Bouslama, A. Ouerdane, B. Kharroubi, J. Alloys Compd. 920, 165703 (2022)

    Article  CAS  Google Scholar 

  32. V.V. Petrov, V.V. Sysoev, A.P. Starnikova, M.G. Volkova, Z.K. Kalazhokov, V.Y. Storozhenko, S.A. Khubezhov, E.M. Bayan, Chemosensors 9, 124 (2021)

    Article  CAS  Google Scholar 

  33. M.R. Alfaro Cruz, O. Ceballos-Sanchez, E. Luévano-Hipólito, L.M. Torres-Martínez, Int. J. Hydrog. Energy 43, 10301–10310 (2018)

    Article  CAS  Google Scholar 

  34. S. Guan, L. Wang, Y. Tamamoto, M. Kato, Y. Lu, X. Zhao, J. Mater, Sci.-Mater. El. 32, 669–675 (2021)

    Article  CAS  Google Scholar 

  35. W. Li, L. Fang, G. Qin, H. Ruan, H. Zhang, C. Kong, L. Ye, P. Zhang, F. Wu, J. Appl. Phys. 117, 145301 (2015)

    Article  Google Scholar 

  36. M. Ilkhani, L. Dejam, J. Mater, Sci.-Mater. El. 32, 3460–3474 (2021)

    Article  CAS  Google Scholar 

  37. L. Xu, J. Su, Y. Chen, G. Zheng, S. Pei, T. Sun, J. Wang, M. Lai, J. Alloys Compd. 548, 7–12 (2013)

    Article  CAS  Google Scholar 

  38. C. Singh, E. Panda, RSC Adv. 6, 48910–48918 (2016)

    Article  CAS  Google Scholar 

  39. C.C. Singh, E. Panda, J. Appl. Phys. 123, 165106 (2018)

    Article  Google Scholar 

  40. D. Xiang, Z. Liu, M. Wu, H. Liu, X. Zhang, Z. Wang, Z.L. Wang, L. Li, Small 16, 1907603 (2020)

    Article  CAS  Google Scholar 

  41. T.H. Kim, J.J. Park, S.H. Nam, H.S. Park, N.R. Cheong, J.K. Song, S.M. Park, Appl. Surf. Sci. 255, 5264–5266 (2009)

    Article  CAS  Google Scholar 

  42. H.B. Fan, S.Y. Yang, P.F. Zang, H.Y. Wei, X.L. Liu, C.M. Jiao, Q.S. Zhu, Y.H. Chen, Z.G. Wang, Chin. Phys. Lett. 24, 2108 (2007)

    Article  CAS  Google Scholar 

  43. F. Stavale, N. Nilius, H.J. Freund, J. Phys. Chem. Lett. 4, 3972–3976 (2013)

    Article  CAS  Google Scholar 

  44. M. Wang, Y. Zhou, Y. Zhang, E.J. Kim, S.H. Hahn, S.G. Seong, Appl. Phys. Lett. 100, 101906 (2012)

    Article  Google Scholar 

  45. Y. Xu, B. Bo, X. Gao, Z. Qiao, Crystals 9, 236 (2019)

    Article  CAS  Google Scholar 

  46. T. Chen, G.Z. Xing, Z. Zhang, H.Y. Chen, T. Wu, Nanotechnology 19, 435711 (2008)

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by National Natural Science Foundation of China (Project No. 11975173).

Author information

Authors and Affiliations

Authors

Contributions

HL: provided ideas and guided the design of research plans, and JL: implemented the research process, collected and sorted out data and wrote a thesis. RZ, WD and CH: During the experiment, technical was supported.

Corresponding author

Correspondence to Hongyu Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Liu, H., Deng, W. et al. Effect of annealing atmosphere on structure and photoluminescence of ZnMgO thin films. J Mater Sci: Mater Electron 34, 2172 (2023). https://doi.org/10.1007/s10854-023-11473-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11473-9

Navigation