Skip to main content
Log in

Effect of Ni incorporation on structural, optical, morphological properties of ZnO thin films deposited by laser ablation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The structural, optical and morphological properties of Ni-doped ZnO (NZO) thin films were studied by X-ray diffraction (XRD), ultraviolet–visible absorbance spectroscopy (UV–Vis), Photoluminescence spectroscopy (PL), atomic force microscopy (AFM), Field emission scanning electron spectroscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). 0%, 3%, 5%, and 7% NZO thin films were deposited on fused silica substrate by pulsed laser deposition (PLD) technique at a substrate temperature of 300 ºC at oxygen partial pressure of 1 mTorr. XRD results show that all deposited films were crystalline and oriented along (002) plane with wurtzite symmetry. All deposited films also show high transmittance in the UV–Visible region (300–800 nm) and their band gaps were calculated using Tauc’s formulation. NZO thin films show a lesser bandgap i.e. 3.20 eV for 3% and 3.11 eV for 7% Ni doped ZnO film as compared to pure ZnO films. Photoluminescence shows emission in the visible region at 430 nm. AFM and FESEM results revealed the uniform deposition of NZO and ZnO films over a fused silica substrate and FTIR analysis shows the shifting of Zn–O–Zn band towards higher wavenumber region with different Ni concentrations. Results obtained from this study indicate that NZO thin films grown by PLD technique can be a promising candidate for optoelectronic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are not openly available and are available from the corresponding author upon reasonable request.

References

  1. M.-L. Lee, S.-S. Wang, Y.-H. Yeh, P.-H. Liao, J.-K. Sheu, Light-emitting diodes with surface gallium nitride p–n homojunction structure formed by selective area regrowth. Sci. Rep. 9(1), 1–7 (2019). https://doi.org/10.1038/s41598-019-40095-7

    Article  CAS  Google Scholar 

  2. Jiang Lin, Jingfeng Bi Gui, Minghui Song, Jianqing Liu, Weiping Xiong, Meichun Huang, III-V multi-junction solar cells, in Optoelectronics-Advanced Materials and Devices. (IntechOpen, London, 2013). https://doi.org/10.5772/50965

    Chapter  Google Scholar 

  3. I.E. Titkov, A.S. Zubrilov, L.A. Delimova, D.V. Mashovets, I.A. Liniĭchuk, I.V. Grekhov, White electroluminescence from ZnO/GaN structures. Semiconductors 41, 564–569 (2007). https://doi.org/10.1134/S106378260705017X

    Article  CAS  Google Scholar 

  4. J.-H. Lim, C.-K. Kang, K.-K. Kim, I.-K. Park, D.-K. Hwang, S.-J. Park, UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering. Adv. Mater. 18(20), 2720–2724 (2006). https://doi.org/10.1002/adma.200502633

    Article  CAS  Google Scholar 

  5. Peter Capper, Safa O. Kasap, Arthur Willoughby, Zinc oxide materials for electronic and optoelectronic device applications (Wiley, Hoboken, 2011)

    Google Scholar 

  6. Dong Chan Kim, Won Suk Han, Bo Hyun Kong, Hyung Koun Cho, Chang Hee Hong, Fabrication of the hybrid ZnO LED structure grown on p-type GaN by metal organic chemical vapor deposition. Physica B: Condens. Matter. 401, 386–390 (2007). https://doi.org/10.1016/j.physb.2007.08.194

    Article  CAS  Google Scholar 

  7. Byeong-Yun. Oh, Min-Chang. Jeong, Tae-Hyoung. Moon, Woong Lee, Jae-Min. Myoung, Jeoung-Yeon. Hwang, Dae-Shik. Seo, Transparent conductive Al-doped ZnO films for liquid crystal displays. J. Appl. Phys. 10(1063/1), 2206417 (2006)

    Google Scholar 

  8. A. Bouaine, A. Bourebia, H. Guendouz, Z. Riane, Synthesis and characterization of In doped ZnO thin film as efficient transparent conducting oxide candidate. Optik 166, 317–322 (2018). https://doi.org/10.1016/j.ijleo.2018.04.017

    Article  CAS  Google Scholar 

  9. Z. Ma, P. Cui, Z. Jia, Y. Zhang, Wu. Jinchao, J. Song, Enhanced electroluminescence from ZnO quantum dot light-emitting diodes by introducing AZO/Ag NWs/AZO composite film cathode. J. Mater. Sci.: Mater. Electron. 34(18), 1431 (2023). https://doi.org/10.1007/s10854-023-10845-5

    Article  CAS  Google Scholar 

  10. Sunandan Baruah, Joydeep Dutta, Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. (2009). https://doi.org/10.1088/1468-6996/10/1/013001

    Article  Google Scholar 

  11. R. Triboulet, Jacques Perriere, Epitaxial growth of ZnO films. Prog. Cryst. Growth Charact. Mater. 47(2–3), 65–138 (2003). https://doi.org/10.1016/j.pcrysgrow.2005.01.003

    Article  CAS  Google Scholar 

  12. Y.R. Ryu, T.S. Lee, H.W. White, A technique of hybrid beam deposition for synthesis of ZnO and other metal oxides. J. Cryst. Growth 261(4), 502–507 (2004). https://doi.org/10.1016/j.jcrysgro.2003.09.037

    Article  CAS  Google Scholar 

  13. Vanita Devi, D.K. Manish Kumar, R.J. Shukla, D.M. Choudhary, Ravindra Kumar Phase, B.C. Joshi, Structural, optical and electronic structure studies of Al doped ZnO thin films. Superlattices Microstruct. 83, 431–438 (2015). https://doi.org/10.1016/j.spmi.2015.03.047

    Article  CAS  Google Scholar 

  14. Vanita Devi, R.J. Manish Kumar, D.M. Choudhary, Ravindra Kumar Phase, B.C. Joshi, Band offset studies in pulse laser deposited Zn1− xCdxO/ZnO hetero-junctions. J. Appl. Phys. (2015). https://doi.org/10.1063/14922425

    Article  Google Scholar 

  15. Vanita Devi, B.C. Joshi, Manish Kumar, R.J. Choudhary, Structural and optical properties of Cd and Mg doped zinc oxide thin films deposited by pulsed laser deposition. J. Phys. 534(1), 012047 (2014). https://doi.org/10.1088/1742-6596/534/1/012047

    Article  CAS  Google Scholar 

  16. A. Singh, B.C. Joshi, D. Kumar, P.K. Khanna, M. Kumar, Effect of band gap offset on ZnO (Cd, Mg)/ZnO: P multi quantum well light emitting diodes: a simulation study. Energy Environ. Focus 3(2), 185–188 (2014). https://doi.org/10.1166/eef.2014.1095

    Article  Google Scholar 

  17. N.J. Dayan, S.R. Sainkar, R.N. Karekar, R.C. Aiyer, Formulation and characterization of ZnO: Sb thick-film gas sensors. Thin solid films 325(1–2), 254–258 (1998). https://doi.org/10.1016/S0040-6090(98)00501-X

    Article  CAS  Google Scholar 

  18. Anchal Srivastava, Nishant Kumar, Kamakhya Prakash Misra, Sanjay Khare, Enhancement of band gap of ZnO nanocrystalline films at a faster rate using Sr dopant. Electron. Mater. Lett. 10, 703–711 (2014). https://doi.org/10.1007/s13391-014-3131-9

    Article  CAS  Google Scholar 

  19. Boshra Ghanbari Shohany, Ali Khorsand Zak, Doped ZnO nanostructures with selected elements-Structural, morphology and optical properties: a review. Ceram. Int. 46(5), 5507–5520 (2020). https://doi.org/10.1016/j.ceramint.2019.11.051

    Article  CAS  Google Scholar 

  20. F.X. Xiu, Z. Yang, L.J. Mandalapu, D.T. Zhao, J.L. Liu, W.P. Beyermann, High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy. Appl. Phys. Lett. (2005). https://doi.org/10.1063/12089183

    Article  Google Scholar 

  21. Messaouda Ayachi, F. Ayad, Abdelkader Djelloul, Lyes Benharrat, S. Anas, Synthesis and characterization of Ni-doped ZnO thin films prepared by sol–gel spin-coating method. Semiconductors 55(5), 482–490 (2021). https://doi.org/10.1134/S1063782621050043

    Article  CAS  Google Scholar 

  22. R. Elilarassi, G. Chandrasekaran, Synthesis, structural and optical characterization of Ni-doped ZnO nanoparticles. J. Mater. Sci.: Mater. Electron. 22, 751–756 (2011). https://doi.org/10.1007/s10854-010-0206-8

    Article  CAS  Google Scholar 

  23. J. Zhao, Li. Wang, X. Yan, Ya. Yang, Y. Lei, J. Zhou, Y. Huang, Gu. Yousong, Y. Zhang, Structure and photocatalytic activity of Ni-doped ZnO nanorods. Mater. Res. Bull. 46(8), 1207–1210 (2011). https://doi.org/10.1016/j.materresbull.2011.04.008

    Article  CAS  Google Scholar 

  24. Nick A. Shepelin, Zahra P. Tehrani, Natacha Ohannessian, Christof W. Schneider, Daniele Pergolesi, Thomas Lippert, A practical guide to pulsed laser deposition. Chem. Soc. Rev. (2023). https://doi.org/10.1039/D2CS00938B

    Article  Google Scholar 

  25. Ben Elkamel, Nejeh Hamdaoui Imen, Amine Mezni, Ridha Ajjel, Lotfi Beji, Synthesis and characterization of Cu doped ZnO nanoparticles for stable and fast response UV photodetector at low noise current. J. Mater. Sci.: Mater. Electron. 30, 9444–9454 (2019). https://doi.org/10.1007/s10854-019-01276-2

    Article  CAS  Google Scholar 

  26. O. Polat, Z. Durmus, F.M. Coskun, M. Coskun, Abdulmecit Turut, Engineering the band gap of LaCrO 3 doping with transition metals (Co, Pd, and Ir). J. Mater. Sci. 53, 3544–3556 (2018). https://doi.org/10.1007/s10853-017-1773-3

    Article  CAS  Google Scholar 

  27. Gang Xiong, U. Pal, J.G. Serrano, K.B. Ucer, R.T. Williams, Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective. Phys. status solidi c 3(10), 3577–3581 (2006). https://doi.org/10.1002/pssc.200672164

    Article  CAS  Google Scholar 

  28. Hemant Singh, K.L. Yadav, Structural, dielectric, vibrational and magnetic properties of Sm doped BiFeO3 multiferroic ceramics prepared by a rapid liquid phase sintering method. Ceram. Int. 41(8), 9285–9295 (2015). https://doi.org/10.1016/j.ceramint.2015.03.212

    Article  CAS  Google Scholar 

  29. T. Prasada. Rao, M.C. Santhoshkumar, Effect of thickness on structural, optical and electrical properties of nanostructured ZnO thin films by spray pyrolysis. Appl. Surf. Sci. 255(8), 4579–4584 (2009). https://doi.org/10.1016/j.apsusc.2008.11.079

    Article  CAS  Google Scholar 

  30. Y. Ammaih, A. Lfakir, B. Hartiti, A. Ridah, P. Thevenin, M. Siadat, Structural, optical and electrical properties of ZnO: Al thin films for optoelectronic applications. Opt. Quantum Electron. 46, 229–234 (2014). https://doi.org/10.1007/s11082-013-9757-2

  31. Y. Larbah, M. Adnane, T. Sahraoui, Effect of substrate temperature on structural and optical properties of spray deposited ZnO thin films. Mater. Sci.-Pol. 33(3), 491–496 (2015). https://doi.org/10.1515/msp-2015-0062

    Article  CAS  Google Scholar 

  32. Tamanna Sharma, Maneesha Garg, "Optical and morphological characterization of ZnO nano-sized powder synthesized using single step sol-gel technique. Opt Mater 132, 112794 (2022). https://doi.org/10.1016/j.optmat.2022.112794

    Article  CAS  Google Scholar 

  33. D.-L. Hou, R.-B. Zhao, Y.-Y. Wei, C.-M. Zhen, C.-F. Pan, G.-D. Tang, Room temperature ferromagnetism in Ni-doped ZnO films. Curr. Appl. Phys. 10(1), 124–128 (2010). https://doi.org/10.1016/j.cap.2009.05.007

    Article  Google Scholar 

  34. A.A. Aboud, M. Shaban, N. Revaprasadu, Effect of Cu, Ni and Pb doping on the photo-electrochemical activity of ZnO thin films. RSC Adv. 9(14), 7729–7736 (2019). https://doi.org/10.1039/C8RA10599E

    Article  CAS  Google Scholar 

  35. T. Sharma, M. Garg, Elucidation of modification in structural and thermal properties of polystyrene nanocomposite films. Bull. Mater. Sci. 46(3), 122 (2023). https://doi.org/10.1007/s12034-023-02957-9

    Article  CAS  Google Scholar 

  36. Ali Rahmati, Ali Balouch Sirgani, Mehdi Molaei, Masoud Karimipour, Cu-doped ZnO nanoparticles synthesized by simple co-precipitation route. Eur. Phys. J. Plus 129, 1–7 (2014). https://doi.org/10.1140/epjp/i2014-14250-8

    Article  CAS  Google Scholar 

  37. B. Subramanian, C. Sanjeeviraja, M. Jayachandran, Brush plating of tin (II) selenide thin films. J. Cryst. Growth 234(2–3), 421–426 (2002). https://doi.org/10.1016/S0022-0248(01)01697-9

    Article  CAS  Google Scholar 

  38. P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 9(23), 6814–6817 (2018). https://doi.org/10.1021/acs.jpclett.8b02892

    Article  CAS  Google Scholar 

  39. E. Burstein, Anomalous optical absorption limit in InSb. Phys. Rev. 93(3), 632 (1954). https://doi.org/10.1103/PhysRev.93.632

    Article  CAS  Google Scholar 

  40. J. Jayabharathi, C. Karunakaran, V. Kalaiarasi, P. Ramanathan, Nano ZnO, Cu-doped ZnO, and Ag-doped ZnO assisted generation of light from imidazole. J. Photochem. Photobiol. A 295, 1–10 (2014). https://doi.org/10.1016/j.jphotochem.2014.09.002

    Article  CAS  Google Scholar 

  41. T. Kumpika, W. Thongsuwan, P. Singjai, Optical and electrical properties of ZnO nanoparticle thin films deposited on quartz by sparking process. Thin Solid Films 516(16), 5640–5644 (2008). https://doi.org/10.1016/j.tsf.2007.07.062

    Article  CAS  Google Scholar 

  42. X. Zhu, Wu. Hui-Zhen, D.-J. Qiu, Z. Yuan, G. Jin, J. Kong, W. Shen, Photoluminescence and resonant Raman scattering in N-doped ZnO thin films. Opt. Commun. 283(13), 2695–2699 (2010). https://doi.org/10.1016/j.optcom.2010.03.006

    Article  CAS  Google Scholar 

  43. A. El Manouni, F.J. Manjón, M. Mollar, B. Marí, R. Gómez, M.C. López, J.R. Ramos-Barrado, Effect of aluminium doping on zinc oxide thin films grown by spray pyrolysis. Superlattices Microstruct. 39(1–4), 185–192 (2006). https://doi.org/10.1016/j.spmi.2005.08.041

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors Prateek Gupta would like to thank the Department of Atomic Energy–UGC to provide us with experimental facilities. The author also likes to thank JIIT Noida-62 for experimental facilities support. The author wants to say thanks to Dr. Maneesha Garg and Tamanna Sharma from the Department of Physics of J.C Bose University of Science and Technology, YMCA Faridabad, India.

Funding

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Contributions

Experiment, characterization, analysis, writing original draft: Prateek Gupta.Review and Editing, Supervisor: Dr. B.C. Joshi.

Corresponding author

Correspondence to Bhubesh C. Joshi.

Ethics declarations

Conflict of interest

Regarding the publication of this paper, there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P., Joshi, B.C. Effect of Ni incorporation on structural, optical, morphological properties of ZnO thin films deposited by laser ablation. J Mater Sci: Mater Electron 34, 1559 (2023). https://doi.org/10.1007/s10854-023-10985-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10985-8

Navigation