Skip to main content
Log in

Enhanced electrical properties of (1−x)(K0.48Na0.48Li0.04)(Nb0.95Sb0.05)O3xBi0.5(Na0.4K0.1)TiO3 ceramics through structural phase modification

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free (1−x)(K0.48Na0.48Li0.04)(Nb0.95Sb0.05)O3xBi0.5(Na0.4K0.1)TiO3 (KNLNS−xBNKT) ceramics were synthesized following a two-step sintering method. We focused on studying the effect of Bi0.5(Na0.4K0.1)TiO3 on the structural phase modification process and the physical properties of lead-free KNLNS−xBNKT ceramics to optimize the BNKT content to improve the physical properties of the ceramic materials. The experimental results reveal that the physical properties of the 0.98KNLNS−0.02BNKT ceramics were the best at the optimum BNKT content of 0.02 mol, the density (ρ) was recorded to be 4.55 g/cm3, the kp value was 0.35, the εr value was 1287, d33 value was 217 pC/N, the Qm value was 108, and the Pr value was 15.3 µC/cm2. Additionally, the value of Smax (0.17%) and d33* (374 pm/V) increased significantly when the BNKT content was 0.03 mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The raw data supporting the conclusions of this article will be made available by the authors on reasonable request.

References

  1. P.D. Gio, L.D. Vuong, L.T.U. Tu, J. Mater. Sci.: Mater. Electron. 32, 13738–13747 (2021)

    CAS  Google Scholar 

  2. L.T.U. Tu, N.T. Tho, J. Mater. Sci.: Mater. Electron. 34, 917 (2023)

    CAS  Google Scholar 

  3. L.T.U. Tu, P.D. Gio, J. Mater. Sci.: Mater. Electron. 34, 217 (2023)

    CAS  Google Scholar 

  4. P.D. Gio, H.Q. Viet, L.D. Vuong, Int. J. Mater. Res. 109, 1071–1076 (2018)

    CAS  Google Scholar 

  5. D.A. Tuan, V.T. Tung, L.D. Vuong, N.H. Yen, L.T.U. Tu, J. Electron. Mater. 47, 6297–6301 (2018)

    Article  CAS  Google Scholar 

  6. X. Wang, X. Lv, Y. Ma, X.-. Zhang, J. Lyu, J. Wu, Acta Mater. 254, 118997 (2023)

    Article  CAS  Google Scholar 

  7. L.D. Vuong, D.A. Quang, P. Van Quan, N. Truong-Tho, J. Electron. Mater. 49, 6465 (2020)

    Article  CAS  Google Scholar 

  8. L.D. Vuong, N. Truong-Tho, J. Electron. Mater. 46, 6395–6402 (2017)

    Article  CAS  Google Scholar 

  9. T. Huang, D.-Q. Xiao, W.-F. Liang, J.-G. Wu, Z. Wang, J.-G. Zhu, Ferroelectrics. 458, 37–42 (2014)

    Article  CAS  Google Scholar 

  10. X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, X. Wang, J. Am. Chem. Soc. 136, 2905–2910 (2014)

    Article  CAS  Google Scholar 

  11. L.D. Vuong, N.Q.D. Lich, N.X. Cuong, V.Q. Nha, N.D. Nhat, L.D. Hieu, L.P. Son, H.T.T. Linh, N.H. Chuc, T.N. An, T.N. Tuyen, P.-C. Dat, Wei, Mater. Res. Express (2023). https://doi.org/10.1088/2053-1591/acf191

    Article  Google Scholar 

  12. Y. Pan, J. Feng, L. Huang, Z. Xu, Y. Chen, Mater. Today Commun. 34, 105340 (2023)

    Article  CAS  Google Scholar 

  13. X. Cheng, J. Wu, X. Wang, B. Zhang, J. Zhu, D. Xiao, X. Wang, X. Lou, Appl. Phys. Lett. 103, 052906 (2013)

    Article  Google Scholar 

  14. P.D. Gio, L.D. Vuong, V. ThanhTung, J. Electroceram. 46, 107–114 (2021)

    Article  CAS  Google Scholar 

  15. L.D. Vuong, D.A. Quang, V.T. Tung, N.H. Chuc, N.N. Trac, J. Mater. Sci.: Mater. Electron. 31, 18056–18069 (2020)

    Google Scholar 

  16. U. Nuraini, N.A. Triyuliana, M. Mashuri, P. Kidkhunthod, S. Suasmoro, J. Mater. Sci.: Mater. Electron. 29, 1139–1145 (2018)

    CAS  Google Scholar 

  17. Z. Dai, F. Zhang, M.N. Rafiq, C. Liu, X. Wang, S. Gu, S. Yasui, ACS Omega. 8, 7883–7890 (2023)

    Article  CAS  Google Scholar 

  18. X. Gao, Z. Cheng, Z. Chen, Y. Liu, X. Meng, X. Zhang, J. Wang, Q. Guo, B. Li, H. Sun, Q. Gu, H. Hao, Q. Shen, J. Wu, X. Liao, S.P. Ringer, H. Liu, L. Zhang, W. Chen, F. Li, S. Zhang, Nat. Commun. 12, 881 (2021)

    Article  CAS  Google Scholar 

  19. J. Wu, RSC Adv. 4, 53490–53497 (2014)

    Article  CAS  Google Scholar 

  20. S. Kumar, N. Thakur, Bull. Mater. Sci. 44, 51 (2021)

    Article  CAS  Google Scholar 

  21. S. Supriya, S. Kalainathan, S. Swaroop, Synthesis. 3, 488–494 (2011)

    CAS  Google Scholar 

  22. F. Rubio-Marcos, J.J. Romero, M.S. Martín-Gonzalez, J.F. Fernández, J. Eur. Ceram. Soc. 30, 2763–2771 (2010)

    Article  CAS  Google Scholar 

  23. F. Rubio-Marcos, J.J. Romero, J.F. Fernandez, J. Nanopart. Res. 12, 2495–2502 (2010)

    Article  CAS  Google Scholar 

  24. R.N. Nandini, M. Krishna, A.V. Suresh, K.N. Rao, Iran. J. Mater. Sci. Eng. (2018). https://doi.org/10.22068/ijmse.15.2.14

    Article  Google Scholar 

  25. M. Dolhen, A. Mahajan, R. Pinho, M.E. Costa, G. Trolliard, P.M. Vilarinho, RSC Adv. 5, 4698–4706 (2015)

    Article  CAS  Google Scholar 

  26. F. Akram, M. Habib, J. Bae, S.A. Khan, S.Y. Choi, T. Ahmed, S. Baek, S.T.U. Din, D.-H. Lim, S.-J. Jeong, Y.S. Sung, T.K. Song, M.-H. Kim, S. Lee, J. Mater. Sci. 56, 13198–13214 (2021)

    Article  CAS  Google Scholar 

  27. J. Ma, J. Wu, B. Wu, RSC Adv. 8, 29871–29878 (2018)

    Article  CAS  Google Scholar 

  28. C. Jiang, X. Tian, G. Shi, K0.5Na0.5NbO3 piezoelectric ceramics and its composites fabricated from hydrothermal powders, Proceedings of the 2016 4th International Conference on Sensors, Mechatronics and Automation (ICSMA 2016), Atlantis Press, 321–327 (2016)

  29. M. Venet, W. Santa-Rosa, P.S. da Silva, J.-C. M’Peko, P. Ramos, H. Amorín, M. Algueró, Selection and optimization of a K0.5Na0.5NbO3-based material for environmentally-friendly magnetoelectric composites. Materials 13, 731 (2020)

    Article  CAS  Google Scholar 

  30. J. Zhou, G. Xiang, J. Shen, H. Zhang, Z. Xu, H. Li, P. Ma, W. Chen, J. Electroceram. 44, 95–103 (2020)

    Article  CAS  Google Scholar 

  31. L.D. Vuong, J. Mater. Sci.: Mater. Electron. 33, 6710–6721 (2022)

    CAS  Google Scholar 

  32. D.A. Quang, L.D. Vuong, J. Science: Adv. Mater. Devices. 7, 100436 (2022)

    CAS  Google Scholar 

  33. K. Wang, J.-F. Li, J. Adv. Ceram. 1, 24–37 (2012)

    Article  CAS  Google Scholar 

  34. N. Zhang, T. Zheng, N. Li, C. Zhao, J. Yin, Y. Zhang, H. Wu, S.J. Pennycook, J. Wu, ACS Appl. Mater. Interfaces. 13, 7461–7469 (2021)

    Article  CAS  Google Scholar 

  35. U. Sutharsini, M. Thanihaichelvan, R. Singh, Two-Step Sintering of Ceramics (InTechOpen, London, 2018), pp.4–21

    Google Scholar 

  36. N. Truong-Tho, L.D. Vuong, J. Adv. Dielectr. 10, 2050011 (2020)

    Article  CAS  Google Scholar 

  37. L.D. Vuong, P.D. Gio, J. Alloys Compd. 817, 152790 (2020)

    Article  CAS  Google Scholar 

  38. Y. Chen, L. Li, Z. Zhou, Y. Wang, Q. Chen, Q. Wang, J. Adv. Ceram. 12, 1593–1611 (2023)

    Article  CAS  Google Scholar 

  39. Y. Zhang, L. Li, B. Shen, J. Zhai, Dalton Trans. 44, 7797–7802 (2015)

    Article  CAS  Google Scholar 

  40. Z.-X. Xu, J.-M. Yan, L. Guo, M. Xu, F.-F. Wang, Y.-K. Liu, R.-K. Zheng, J. Mater. Sci.: Mater. Electron. 29, 1341–1348 (2018)

    CAS  Google Scholar 

  41. J. Hao, W. Bai, W. Li, B. Shen, J. Zhai, J. Mater. Res. 27, 2943–2955 (2012)

    Article  CAS  Google Scholar 

  42. R. Rani, S. Sharma, R. Rai, A.L. Kholkin, Mater. Res. Bull. 47, 381–386 (2012)

    Article  CAS  Google Scholar 

  43. J. Fuentes, J. Portelles, M.D. Durruthy-Rodríguez, H. H’Mok, O. Raymond, J. Heiras, M.P. Cruz, J.M. Siqueiros, Appl. Phys. A 118, 709–715 (2015)

    Article  CAS  Google Scholar 

  44. D. Lin, K.W. Kwok, H.L.W. Chan, J. Appl. Phys. 102, 034102 (2007)

    Article  Google Scholar 

  45. F. Rubio-Marcos, P. Ochoa, J.F. Fernandez, J. Eur. Ceram. Soc. 27, 4125–4129 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Ministry of Education and Training under grant number B2023-DHH-30.

Funding

This research was funded by the Ministry of Education and Training under grant number B2023-DHH-30.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study concept and design including doing experiments as well as discussing writing the manuscript. The manuscript was read and approved by all authors.

Corresponding author

Correspondence to Le Dai Vuong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vuong, L.D., Lich, N.Q., Nha, V.Q. et al. Enhanced electrical properties of (1−x)(K0.48Na0.48Li0.04)(Nb0.95Sb0.05)O3xBi0.5(Na0.4K0.1)TiO3 ceramics through structural phase modification. J Mater Sci: Mater Electron 34, 1963 (2023). https://doi.org/10.1007/s10854-023-11405-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11405-7

Navigation