Skip to main content
Log in

Composition-insensitive enhanced piezoelectric properties in SrZrO3 modified (K, Na)NbO3-based lead-free ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In this work, composition-insensitive enhanced piezoelectric properties are achieved in (1-x)(K0.48Na0.52)0.96Li0.04(Nb0.96Sb0.04)O3-xSrZrO3 (KNN-SZ) lead-free ceramics. Rietveld refinements of the XRD patterns show that the introduction of SrZrO3 straightens the O-B-O bond, leading to a relatively broad compositional region from x = 0.04 to 0.06 for the coexistence of orthorhombic-tetragonal (O-T) phase at room temperature. Within the phase coexistence region, relatively large and composition insensitive piezoelectric properties d33 = 250 ~ 256 pC/N and kp = 0.42 ~ 0.46, as well as low dielectric loss tan δ = 0.026 ~ 0.028 are attained in the KNN-SZ ceramics. The composition insensitivity of piezoelectric properties benefits from the enlarged εr and decreased Pr, which are originated from facilitated polarization rotation in the phase boundary region and normal ferroelectric-to-relaxor transition, respectively. Furthermore, an ultrahigh electric-field induced strain S = 0.195% is obtained, compared with reported KNN-based lead-free ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)

    Article  CAS  Google Scholar 

  2. T. Zheng, J. Wu, D. Xiao, J. Zhu, Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 98, 552–624 (2018)

    Article  CAS  Google Scholar 

  3. J. Wu, D. Xiao, J. Zhu, Potassium–sodium niobate lead-free piezoelectric materials: Past, present, and future of phase boundaries. Chem. Rev. 115, 2559–2595 (2015)

    Article  CAS  Google Scholar 

  4. B. Zhang, J. Wu, X. Cheng, X. Wang, D. Xiao, X. Wang, X. Lou, Lead-free piezoelectrics based on potassium–sodium niobate with giant d33. ACS Applied Materials & Interfaces 5, 7718–7725 (2013)

    Article  CAS  Google Scholar 

  5. H. Tao, J. Wu, Giant piezoelectric effect and high strain response in (1−x)(K0.45Na0.55)(Nb1−ySby)O3-xBi0.5Na0.5Zr1−zHfzO3 lead-free ceramics. J. Eur. Ceram. Soc. 36, 1605–1612 (2016)

    Article  CAS  Google Scholar 

  6. J. Wu, X. Wang, X. Cheng, T. Zheng, B. Zhang, D. Xiao, J. Zhu, X. Lou, New potassium-sodium niobate lead-free piezoceramic: Giant-d33 vs. sintering temperature. Journal of Applied Physics 115, 114104 (2014)

    Article  Google Scholar 

  7. K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. Xiao, J. Zhu, Superior piezoelectric properties in potassium–sodium niobate lead-free ceramics. Adv. Mater. 28(38), 8519–8523 (2016)

    Article  CAS  Google Scholar 

  8. T. Zheng, H. Wu, Y. Yuan, X. Lv, Q. Li, T. Men, C. Zhao, D. Xiao, J. Wu, K. Wang, J.-F. Li, Y. Gu, J. Zhu, S.J. Pennycook, The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ. Sci. 10, 528–537 (2017)

    Article  CAS  Google Scholar 

  9. K. Wang, B. Malič, J. Wu, Shifting the phase boundary: Potassium sodium niobate derivates. MRS Bull. 43, 607–611 (2018)

    Article  CAS  Google Scholar 

  10. H.-C. Thong, C. Zhao, Z. Zhou, C.-F. Wu, Y.-X. Liu, Z.-Z. Du, J.-F. Li, Wen Gong, Ke Wang, technology transfer of lead-free (K, Na)NbO3-based piezoelectric ceramics. Mater. Today (2019). https://doi.org/10.1016/j.mattod.2019.04.016

  11. L. Jiang, Y. Li, J. Xing, J. Wu, Q. Chen, H. Liu, D. Xiao, J. Zhu, Phase structure and enhanced piezoelectric properties in (1-x)(K0.48Na0.52)(Nb0.95Sb0.05)O3-x(Bi0.5Na0.42Li0.08)0.9Sr0.1ZrO3 lead-free piezoelectric ceramics. Ceram. Int. 43, 2100–2106 (2017)

    Article  CAS  Google Scholar 

  12. B. Wu, H. Wu, J. Wu, D. Xiao, J. Zhu, S.J. Pennycook, Giant piezoelectricity and high curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence. J. Am. Chem. Soc. 138(47), 15459–15464 (2016)

    Article  CAS  Google Scholar 

  13. S. Trolier-McKinstry, S. Zhang, A.J. Bell, X. Tan, High-performance piezoelectric crystals, ceramics, and films. Annu. Rev. Mater. Res. 48, 191–127 (2018)

    Article  CAS  Google Scholar 

  14. R. Wang, H. Bando, T. Katsumata, Y. Inaguma, H. Taniguchi, M. Itoh, Tuning the orthorhombic-rhombohedral phase transition temperature in sodium potassium niobate by incorporating barium zirconate. Phys. Status Solidi RRL 3, 142–144 (2009)

    Article  CAS  Google Scholar 

  15. Y. Qin, J. Zhang, W. Yao, C. Lu, S. Zhang, Domain configuration and thermal stability of (K0.48Na0.52)(Nb0.96Sb0.04)O3–Bi0.50(Na0.82K0.18)0.50ZrO3 piezoceramics with high d33 coefficient. ACS Appl. Mater. Interfaces 8, 7257–7265 (2016)

    Article  CAS  Google Scholar 

  16. Y. Zhang, L. Li, B. Shen, J. Zhai, Effect of orthorhombic-tetragonal phase transition on structure and piezoelectric properties of KNN-based lead-free ceramics. Dalton Trans. 44, 7797–7802 (2015)

    Article  CAS  Google Scholar 

  17. Q. Li, M.-H. Zhang, Z.-X. Zhu, K. Wang, J.-S. Zhou, F.-Z. Yao, J.-F. Li, Poling engineering of (K,Na)NbO3-based lead-free piezoceramics with orthorhombic-tetragonal coexisting phases. J. Mater. Chem. C 5, 549–556 (2017)

    Article  CAS  Google Scholar 

  18. F.-Z. Yao, K. Wang, W. Jo, K.G. Webber, T.P. Comyn, J.-X. Ding, B. Xu, L.-Q. Cheng, M.-P. Zheng, Y.-D. Hou, J.-F. Li, Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics. Adv. Funct. Mater. 26, 1217–1224 (2016)

    Article  CAS  Google Scholar 

  19. X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, X. Wang, Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. J. Am. Chem. Soc. 136(7), 2905–2910 (2014)

    Article  CAS  Google Scholar 

  20. R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A 32, 751–767 (1976)

    Article  Google Scholar 

  21. H. Zhang, J. Zhou, J. Shen, X. Yang, C.-L. Wu, K.-K. Han, Z.-H. Zhao, W. Chen, Enhanced piezoelectric property and promoted depolarization temperature in Fe doped Bi1/2(Na0.8K0.2)1/2TiO3 lead-free ceramics. Ceram. Int. 43, 16395–16402 (2017)

    Article  CAS  Google Scholar 

  22. X. Lv, Z. Li, J. Wu, J. Xi, M. Gong, D. Xiao, J. Zhu, Enhanced piezoelectric properties in potassium-sodium niobate-based ternary ceramics. Mater. Des. 109, 609–614 (2016)

    Article  CAS  Google Scholar 

  23. J. Fu, R. Zuo, Y. Xu, J.-F. Li, M. Shi, Investigations of domain switching and lattice strains in (Na,K)NbO3-based lead-free ceramics across orthorhombic-tetragonal phase boundary. J. Eur. Ceram. Soc. 37, 975–983 (2017)

    Article  CAS  Google Scholar 

  24. M.H. Jiang, G.Q. Zhao, Z.F. Gu, G. Cheng, X.Y. Liu, L. Li, Y.S. Du, In-depth structure characterization and properties of (1−x)(Li0.05Na0.475K0.475)(Nb0.95Sb0.05)O3-xBiFeO3 lead-free piezoceramics. J. Mater. Sci. Mater. Electron. 26, 9366–9372 (2015)

    Article  CAS  Google Scholar 

  25. X. Lv, J. Wu, D. Xiao, J. Zhu, X. Zhang, Structural evolution of the R-T phase boundary in KNN-based ceramics. J. Am. Ceram. Soc. 101, 1191–1200 (2018)

    Article  CAS  Google Scholar 

  26. R. Zuo, J. Fu, S. Lu, Z. Xu, Normal to relaxor ferroelectric transition and domain morphology evolution in (K,Na)(Nb,Sb)O3-LiTaO3-BaZrO3 lead-free ceramics. J. Am. Ceram. Soc. 94, 4352–4357 (2011)

    Article  CAS  Google Scholar 

  27. T. Takenaka, H. Nagata, Y. Hiruma, Y. Yoshii, K. Matumoto, Lead-free piezoelectric ceramics based on perovskite structures. J. Electroceram. 19, 259–265 (2007)

    Article  CAS  Google Scholar 

  28. B. Liu, Y. Zhang, P. Li, B. Shen, J. Zhai, Phase transition and electrical properties of Bi0.5(Na0.8K0.2)0.5ZrO3 modified (K0.52Na0.48)(Nb0.95Sb0.05)O3 lead-free piezoelectric ceramics. Ceram. Int. 42, 13824–13829 (2016)

    Article  CAS  Google Scholar 

  29. M.-H. Zhang, K. Wang, J.-S. Zhou, J.-J. Zhou, X. Chu, X. Lv, J. Wu, J.-F. Li, Thermally stable piezoelectric properties of (K, Na)NbO3-based lead-free perovskite with rhombohedral-tetragonal coexisting phase. Acta Mater. 122, 344–351 (2017)

    Article  CAS  Google Scholar 

  30. D. Wang, F. Hussain, A. Khesro, A. Feteira, Y. Tian, Q. Zhao, I.M. Reaney, Composition and temperature dependence of structure and piezoelectricity in (1−x)(K1−yNay)NbO3-x(Bi1/2Na1/2)ZrO3 lead-free ceramics. J. Am. Ceram. Soc. 100, 627–637 (2017)

    Article  CAS  Google Scholar 

  31. P. Ren, Z. Liu, M. Wei, L. Liu, J. Shi, F. Yan, H. Fan, G. Zhao, Temperature-insensitive dielectric and piezoelectric properties in (1-x)K0.5Na0.5Nb0.997Cu0.0075O3-xSrZrO3 ceramics. J. Eur. Ceram. Soc. 37, 2091–2097 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51572205), the Equipment Pre-Research Joint Fund of EDD and MOE (No. 6141A02022262), the open project of Engineering Research Center of Nano-Geo Materials of Ministry of Education (NGM2019KF005), the Fundamental Research Funds for the Central Universities (WUT: 2017III035, 2018III019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Shen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Xiang, G., Shen, J. et al. Composition-insensitive enhanced piezoelectric properties in SrZrO3 modified (K, Na)NbO3-based lead-free ceramics. J Electroceram 44, 95–103 (2020). https://doi.org/10.1007/s10832-019-00195-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-019-00195-2

Keywords

Navigation