Skip to main content
Log in

Impact of precursor type on physical, morphological, microstructural, and optical properties of CdZnS nanoparticles for photodegradation applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In current work, Cadmium Zinc Sulfide (CdZnS) nanoparticles (NPs) prepared by chemical co-precipitation technique without using any capping agents. Effect of Zinc source on surface morphology, elemental analysis, and optical properties of CdZnS are discussed in this work. these properties of prepared materials were investigated using a variety of techniques, including X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray, and ultraviolet–visible absorption. Distinct peaks at 31, 34, 43, and 62, which matched CdS, could be seen in the XRD patterns of the CdZnS nanoparticles. The crystalline phase of CdZnS nanoparticles was attributed to the remaining peaks at 34, 36, 47, and 68. The reactants' physicochemical interactions were revealed by FTIR spectroscopy. The spectrum had apparent ethanol-related peaks, with a clear Zn–S interaction peak at 635–634 cm−1. The CdZnS nanoparticles contained sulphur, zinc, and cadmium, according to EDS analysis. In the Zn1 and Zn2 samples, the stoichiometry ratios were found to be 53% Cd, 41% Zn, and 5% S and 82% Cd, 17% Zn, and 1% S, respectively. The CdZnS nanoparticles were spherical in shape and ranged in size from 40 to 50 nm, according to an SEM analysis. The CdZnS nanoparticles' absorption peaks, (Zn1) at 370 nm and (Zn2) at 390 nm, were visible in UV-–Vis. spectra. Quantum size effects on band gap absorption energy were found to have an impact on the optical bandgap energy, which was found to be 3.35 eV (Zn1) and 3.13 eV (Zn2). Overall, the study successfully characterized the structural, morphological, and optical properties of CdZnS nanoparticles and provided valuable insights into their potential applications in various fields. According to the results the prepared nanoparticles are suitable for photodegradation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the manuscript.

References

  1. A.S. Baron, K.A. Mohammed, M.M. Abood, The role of Ag layer in the optical properties of CdS thin film. Chalcogenide Lett. 18(10), 585–588 (2021)

    Article  CAS  Google Scholar 

  2. B. Sarangi, S.P. Mishra, N. Behera, Advances in green synthesis of ZnS nanoparticles: an overview. Mater. Sci. Semicond. Process. 147, 106723 (2022)

    Article  CAS  Google Scholar 

  3. Guadalupe Pizarro, Wilson Alavia, Karen González, Héctor. Díaz, Oscar Marambio, Rudy Martin-Trasanco, Julio Sánchez, Diego Oyarzún, Andrónico Neira-Carrillo, Design and study of a photo-switchable polymeric system in the presence of ZnS nanoparticles under the influence of UV light irradiation. Polymers 14(5), 945 (2022)

    Article  CAS  Google Scholar 

  4. X. Chen, T. Wang, Y. Han, W. Lv, B. Li, C. Su, M. Zeng, J. Yang, N. Hu, Y. Su, Z. Yang, Wearable NO2 sensing and wireless application based on ZnS nanoparticles/nitrogen-doped reduced graphene oxide. Sens. Actuators B: Chem. 345, 130423 (2021)

    Article  CAS  Google Scholar 

  5. D.M. Dhahir, A.J.K. Alrubaie, K.A. Mohammed, A.S. Baron, M.M. Abood, A.H.O. Alkhayatt, The role of Ag layer in the optical properties of PN junction thin films. Chalcogenide Lett. 19(3), 183 (2022)

    Article  CAS  Google Scholar 

  6. Z.R. Khan, M. Shkir, Third order optical nonlinearities in CdS nanostructured thin films: a comprehensive review. J. Mater. Sci.: Mater. Electron. 32(19), 24176–24197 (2021)

    CAS  Google Scholar 

  7. N.A.S. Omar, Y.W. Fen, J. Abdullah, M.H.M. Zaid, M.A. Mahdi, Structural, optical and sensing properties of CdS-NH2GO thin film as a dengue virus E-protein sensing material. Optik 171, 934–940 (2018)

    Article  CAS  Google Scholar 

  8. M.A. Husseina, K.A. Mohammedb, R.A. Talibc, Energy band gaps and optical absorption properties of the CdZnS and CdZnS: PEO thin films prepared by chemical bath deposition. Chalcogenide Lett. 19(5), 329–335 (2022)

    Article  Google Scholar 

  9. M.M. Hadi, K.A. Mohammed, Investigation of the role of annealing time in the optical, structural and morphological properties of trinary CdZnS thin films prepared by chemical bath deposition. Chalcogenide Lett. 19(4), 277–283 (2022)

    Article  CAS  Google Scholar 

  10. S.G. Kang, T.H. Choe, C.U. Ryom, M.C. Ri, Research on synthesis and photocatalytic activity of ZnFe2O4/Ag/g-C3N4 nanosheets composites. Compos. Interfaces 28(3), 223–235 (2021)

    Article  CAS  Google Scholar 

  11. S. Horoz, O. Baytar, O. Sahin, H. Kilicvuran, Photocatalytic degradation of methylene blue with Co alloyed CdZnS nanoparticles. J. Mater. Sci.: Mater. Electron. 29(2), 1004–1010 (2018)

    CAS  Google Scholar 

  12. Z.T. Abdulameer, A.J. Alrubaie, H.A. Alshamarti, S.H. Talibb, J.H. Mohammed, H.A. Jameelb, K.A. Mohammed, Optical properties of ZnO nanorods and ZnO/CdZnS thin films. Chalcogenide Lett. 19(7), 457–462 (2022)

    Article  CAS  Google Scholar 

  13. K. Bashir, A. Ali, M. Ashraf, N. Mehboob, A. Zaman, Optical and structural properties of vacuum annealed multilayer nanostructured CdZnS thin films deposited by thermal evaporation. Opt. Mater. 119, 111353 (2021)

    Article  CAS  Google Scholar 

  14. A.M. Ajam, K.A. Mohammed, Z.N. Salman, Optical properties of PbS/CdZnS double layers nanocrystalline thin films for opto-electronic applications. Int. J. Nanosci. 5, 2250037 (2022)

    Article  Google Scholar 

  15. A.D. Gupta, A. Gupta, A. Reyes-Calderón, V.I. Merupo, G. Kalita, J. Herrera-Celis, G. Oza, Biological Synthesis of PbS, As3S4, HgS, CdS Nanoparticles using Pseudomonas aeruginosa and their structural, morphological, photoluminescence as well as whole cell protein profiling studies. J. Fluoresc. 31(5), 1445–1459 (2021)

    Article  CAS  Google Scholar 

  16. E.M. Modan, A.G. Plăiașu, Advantages and disadvantages of chemical methods in the elaboration of nanomaterials. Ann. “Dunarea de Jos” Univ. Galati. Fascicle IX Metallur. Mater. Sci. 43(1), 53–60 (2020)

    CAS  Google Scholar 

  17. N. Baig, I. Kammakakam, W. Falath, Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2(6), 1821–1871 (2021)

    Article  Google Scholar 

  18. S. C. Shrivastava, R. Shrivastava, Comparative analysis of fractal dimension of CdS, CdZnS and CdZnS: Ce thin films. Indian J. Phys. 1–9 (2022)

  19. A.M. Holi, A.A. AL-Zahrani, Spin coating technique for the synthesis of hexagonal CdxZn1-xS decorated pure ZnO nanorods arrays. Solar Cells 13, 121 (2020)

    Google Scholar 

  20. Khalid Bashir, Nasir Mehboob, Muhammad Ashraf, Abid Zaman, Vineet Tirth, Ali Algahtani, Asad Ali, Turab Ali, Muhammad Mushtaq, Khaled Althubeiti, Effects of vacuum and air annealing on structural, morphological, optical, and electrical properties of multilayer CdZnS thin films for photovoltaic and optoelectronic applications. ACS Omega 7(15), 12937–12946 (2022)

    Article  CAS  Google Scholar 

  21. S. Lu, M. Li, D. Liu, Y. Yang, P. Yang, Self-assembly of Au nanoparticles and quantum dots by functional sol–gel silica layers. J. Nanosci. Nanotechnol. 18(1), 288–295 (2018)

    Article  CAS  Google Scholar 

  22. M.A. Iqbal, M. Malik, A. Zahid, M.R. Islam, I.D. Arellano-Ramírez, M. Al-Bahrani, Unveiling concentration effects on the structural and optoelectronic characteristics of Zn 1–x Cd x S (x= 0, 0.25, 0.50, 0.75, 1) cubic semiconductors: a theoretical study. RSC Adv. 12(35), 22783–22791 (2022)

    Article  CAS  Google Scholar 

  23. S. Horoz, M. Akyol, A. Ekicibil, Ö. Sahin, Structural, optical and magnetic properties of CdZnS and Ni: CdZnS nanoparticles. J. Mater. Sci.: Mater. Electron. 28, 18193–18199 (2017)

    CAS  Google Scholar 

  24. N.K. Cinsy, R.R. Geetha, Characterization and photocatalytic activity of CdZnS nanoparticles incorporated with medicative leaf excerpt. Chalcogenide Lett. 20(2), 121–129 (2023)

    Article  CAS  Google Scholar 

  25. Z.K. Heiba, N.G. Imam, M.B. Mohamed, Coexistence of cubic and hexagonal phases of Cd doped ZnS at different annealing temperatures. Mater. Sci. Semicond. Process. 34, 39–44 (2015)

    Article  CAS  Google Scholar 

  26. N.G. Imam, M.B. Mohamed, Environmentally friendly Zn0. 75Cd0. 25S/PVA heterosystem nanocomposite: UV-stimulated emission and absorption spectra. J. Mol. Struct. 1105, 80–86 (2016)

    Article  CAS  Google Scholar 

  27. J. Theerthagiri, R.A. Senthil, J. Madhavan, Synthesis, characterization and optical properties of CdxZn1-xS nanocrystals. Mater. Sci. Forum 832, 158–167 (2015)

    Article  Google Scholar 

  28. M. Khatamian, M. Saket Oskoui, M. Haghighi, M. Darbandi, Visible-light response photocatalytic water splitting over CdS/TiO2 and CdS–TiO2/metalosilicate composites. Int. J. Energy Res. 38, 1712–1726 (2014)

    Article  CAS  Google Scholar 

  29. N. Soltani, E. Saion, M.Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, P. Vaziri, Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles. Int. J. Mol. Sci. 13, 12242–12258 (2012)

    Article  CAS  Google Scholar 

  30. C. Acar, I. Dincer, G.F. Naterer, Review of photocatalytic watersplitting methods for sustainable hydrogen production. Int. J. Energy Res. 40, 1449–1473 (2016)

    Article  CAS  Google Scholar 

  31. C. Xing, Y. Zhang, W. Yan, L. Guo, Band structure-controlled solid solution of Cd1-x ZnxS photocatalyst for hydrogen production by water splitting. Int. J. Hydrogen Energy 31(14), 2018–2024 (2006)

    Article  CAS  Google Scholar 

  32. S. Azizi, H.R. Dizaji, M.H. Ehsani, Structural and optical properties of Cd1-xZnxS (x= 0, 0.4, 0.8 and 1) thin films prepared using the precursor obtained from microwave irradiation processes. Optik 127(18), 7104–7114 (2016)

    Article  CAS  Google Scholar 

  33. J. Bai, Z. Xie, G. Han, G. Diao, Double-shelled CeO2 coupled CdZnS nanoparticles as an efficient heterojunction visible light photocatalyst for hydrogen evolution. J. Alloys Compd. 919, 165758 (2022)

    Article  CAS  Google Scholar 

  34. J. Gong, X. Song, Y. Gao, S. Gong, Y. Wang, J. Han, Microbiological synthesis of zinc sulfide nanoparticles using Desulfovibrio desulfuricans. Inorg. Nano-Metal Chem. 48(2), 96–102 (2018)

    Article  CAS  Google Scholar 

  35. N.K. Abbas, Z. Yaaqoub, Effect of using different preparation methods on the properties of CdS nanoparticles. Iraqi J. Indus. Res. 9(3), 78–88 (2022)

    Article  Google Scholar 

  36. D. Chawla, N. Goswami, Structural and optical properties of CdZnS nanoparticles by exploding wire technique. Mater. Today: Proc. 28, 278–281 (2020)

    Article  CAS  Google Scholar 

  37. H. Moon, C. Nam, C. Kim, B. Kim, Synthesis and photoluminescence of zinc sulfide nanowires by simple thermal chemical vapor deposition. Mater. Res. Bull. 41(11), 2013–2017 (2006)

    Article  CAS  Google Scholar 

  38. C.B.D. Cunha, P.P. Lopes, F.D. Mayer, R. Hoffmann, Assessment of chemical and mechanical properties of polymers aiming to replace the stainless steel in distillation column. Mater. Res. (2018). https://doi.org/10.1590/1980-5373-mr-2017-0679

    Article  Google Scholar 

  39. S. Tabatabai Yazdi, P. Iranmanesh, N. Khorasanipour, S. Saeednia, A comparative study of the isoelectronic Cd and Hg substitution in EDTA-capped ZnS nanocrystals. J. Mater. Sci.: Mater. Electron. 30(14), 13191–13200 (2019)

    CAS  Google Scholar 

  40. I.M. Ibrahim, I.M. Ali, B.I. Dheeb, Q.A. Abas, A. Ramizy, M.H. Eisa, A.I. Aljameel, Antifungal activity of wide band gap thioglycolic acid capped ZnS: Mn semiconductor nanoparticles against some pathogenic fungi. Mater. Sci. Eng. C 73, 665–669 (2017)

    Article  CAS  Google Scholar 

  41. R. Elilarassi, S. Maheshwari, G. Chandrasekaran, Structural and optical characterization of CdS nanoparticles synthesized using a simple chemical reaction route. Optoelectron. Adv. Mater.-Rapid Commun. 4, 309–312 (2010)

    CAS  Google Scholar 

  42. M. Maleki, M. Sasani Ghamsari, S. Mirdamadi, R. Ghasemzadeh, A facile route for preparation of CdS nanoparticles. Semicond. Phys. Quantum Electron. Optoelectron. 10, 30 (2007)

    Article  CAS  Google Scholar 

  43. V.V.P. Munaga, T. Krishnan, R.K. Borra, Structural, surface morphological, optical and thermoelectric properties of sol–gel spin coated Zn doped CdS thin films. SN Appl. Sci. 2(4), 552 (2020)

    Article  CAS  Google Scholar 

  44. C. Unni, D. Philip, S.L. Smitha, K.M. Nissamudeen, K.G. Gopchandran, Aqueous synthesis and characterization of CdS, CdS: Zn2+ and CdS: Cu2+ quantum dots. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 72(4), 827–832 (2009)

    Article  CAS  Google Scholar 

  45. A. Fernández-Pérez, C. Navarrete, P. Valenzuela, W. Gacitúa, E. Mosquera, H. Fernández, Characterization of chemically-deposited aluminum-doped CdS thin films with post-deposition thermal annealing. Thin Solid Films 623, 127–134 (2017)

    Article  Google Scholar 

  46. M. Shkir, M. Anis, S. Shafik, M.A. Manthrammel, M.A. Sayeed, M.S. Hamdy, S. AlFaify, An effect of Zn content doping on opto-third order nonlinear characteristics of nanostructured CdS thin films fabricated through spray pyrolysis for optoelectronics. Physica E 118, 113955 (2020)

    Article  CAS  Google Scholar 

  47. F. Yang, N.N. Yan, S. Huang, Q. Sun, L.Z. Zhang, Y. Yu, Zn-doped CdS nanoarchitectures prepared by hydrothermal synthesis: mechanism for enhanced photocatalytic activity and stability under visible light. J. Phys. Chem. C 116(16), 9078–9084 (2012)

    Article  CAS  Google Scholar 

  48. A.J. Peter, C.W. Lee, Electronic and optical properties of CdS/CdZnS nanocrystals. Chin. Phys. B 21(8), 087302 (2012)

    Article  Google Scholar 

  49. R. Shrivastava, S.C. Shrivastava, R.S. Singh, A.K. Singh, Synthesis and characterization of cerium-doped CdZnS nanoparticles. Indian J. Phys. 89(11), 1153–1159 (2015)

    Article  CAS  Google Scholar 

  50. A.A. Ibiyemi, A.O. Awodugba, O. Akinrinola, A.A. Faremi, Zinc-doped CdS nanoparticles synthesized by microwave-assisted deposition. J. Semicond. 38(9), 093002 (2017)

    Article  Google Scholar 

  51. H. Zhang, X. Zhu, Y. Tai, J. Zhou, H. Li, Z. Li, H. Lan, Recent advances in nanofiber-based flexible transparent electrodes. Int. J. Extrem. Manuf. 5(3), 32005 (2023). https://doi.org/10.1088/2631-7990/acdc66

    Article  Google Scholar 

  52. X. Zhu, M. Liu, X. Qi, H. Li, Y. Zhang, Z. Li, H. Lan, Templateless, plating-free fabrication of flexible transparent electrodes with embedded silver mesh by electric-field-driven microscale 3D printing and hybrid hot embossing. Adv. Mater. 33(21), 2007772 (2021). https://doi.org/10.1002/adma.202007772

    Article  CAS  Google Scholar 

  53. C. Zhao, C.F. Cheung, P. Xu, High-efficiency sub-microscale uncertainty measurement method using pattern recognition. ISA Trans. 101, 503–514 (2020). https://doi.org/10.1016/j.isatra.2020.01.038

    Article  Google Scholar 

  54. W. Jiang, H. Wang, W. Xie, Z. Qu, Lithography alignment techniques based on Moiré Fringe. Fringe. Photonics 10(4), 351 (2023). https://doi.org/10.3390/photonics10040351

    Article  CAS  Google Scholar 

  55. L. Kong, Y. Liu, L. Dong, L. Zhang, L. Qiao, W. Wang, H. You, Enhanced red luminescence in CaAl12O19:Mn4+via doping Ga3+ for plant growth lighting. Dalton Trans. 49(6), 1947–1954 (2020). https://doi.org/10.1039/C9DT04086B

    Article  CAS  Google Scholar 

  56. X.A.W.W. Pan, Typical electrical, mechanical, electromechanical characteristics of copper-encapsulated REBCO tapes after processing in temperature under 250 ℃. Supercond. Sci. Technol. (2023). https://doi.org/10.1088/1361-6668/acb740

    Article  Google Scholar 

  57. J. Chen, Z. Zhang, H. Lu, Structure design and properties investigation of Bi2O2Se/graphene van der Waals heterojunction from first-principles study. Surf. Interfaces 33, 102289 (2022). https://doi.org/10.1016/j.surfin.2022.102289

    Article  CAS  Google Scholar 

  58. I. Muhammad, A. Ali, L. Zhou, W. Zhang, P.K.J. Wong, Vacancy-engineered half-metallicity and magnetic anisotropy in CrSI semiconductor monolayer. J. Alloy. Compd. 909, 164797 (2022). https://doi.org/10.1016/j.jallcom.2022.164797

    Article  CAS  Google Scholar 

  59. Y. Zhang, Y. He, H. Wang, L. Sun, Y. Su, Ultra-broadband mode size converter using on-chip metamaterial-based Luneburg lens. ACS Photonics 8(1), 202–208 (2021). https://doi.org/10.1021/acsphotonics.0c01269

    Article  CAS  Google Scholar 

  60. L. Cai, Y. Lu, H. Zhu, Performance enhancement of on-chip optical switch and memory using Ge2Sb2Te5 slot-assisted microring resonator. Opt. Lasers Eng. 162, 107436 (2023). https://doi.org/10.1016/j.optlaseng.2022.107436

    Article  Google Scholar 

  61. S. Pang, C. Zhou, Y. Sun, K. Zhang, W. Ye, X. Zhao, B. Hui, Natural wood-derived charcoal embedded with bimetallic iron/cobalt sites to promote ciprofloxacin degradation. J. Clean. Prod. 414, 137569 (2023). https://doi.org/10.1016/j.jclepro.2023.137569

    Article  CAS  Google Scholar 

  62. Y. Zheng, Y. Liu, X. Guo, Z. Chen, W. Zhang, Y. Wang, Y. Zhao, Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants. J. Mater. Sci. Technol. 41, 117–126 (2020). https://doi.org/10.1016/j.jmst.2019.09.018

    Article  CAS  Google Scholar 

  63. L. Chen, Y. Zhao, J. Jing, H. Hou, Microstructural evolution in graphene nanoplatelets reinforced magnesium matrix composites fabricated through thixomolding process. J. Alloy. Compd. 940, 168824 (2023). https://doi.org/10.1016/j.jallcom.2023.168824

    Article  CAS  Google Scholar 

  64. B. Bai, R. Zhou, G. Yang, W. Zou, W. Yuan, The constitutive behavior and dissociation effect of hydrate-bearing sediment within a granular thermodynamic framework. Ocean Eng. 268, 113408 (2023). https://doi.org/10.1016/j.oceaneng.2022.113408

    Article  Google Scholar 

  65. Q. Zhao, J. Liu, H. Yang, H. Liu, G. Zeng, B. Huang, J. Jia, Double U-groove temperature and refractive index photonic crystal fiber sensor based on surface plasmon resonance. Appl. Opt. 61(24), 7225–7230 (2022). https://doi.org/10.1364/AO.462829

    Article  CAS  Google Scholar 

  66. Q. Zhao, J. Liu, H. Yang, H. Liu, G. Zeng, B. Huang, High birefringence D-shaped Germanium-doped photonic crystal fiber sensor. Micromachines 13(6), 826 (2022). https://doi.org/10.3390/mi13060826

    Article  Google Scholar 

  67. L. Kong, G. Liu, Synchrotron-based infrared microspectroscopy under high pressure: An introduction. Matter Radiat. Extrem. 6(6), 68202 (2021). https://doi.org/10.1063/5.0071856

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their appreciation to The Research Center for Advanced Materials Science (RCAMS) at King Khalid University, Saudi Arabia, for funding this work under the grant number RCAMS/KKU/025-23.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: KAM, AK, MAA, RSZ, FHA, SS. Formal analysis: KAM, AK, MAA, RSZ, FHA, SS. Investigation: KAM, AK, MAA, RSZ, FHA, SS. Writing—original draft preparation: KAM, AK, MAA, RSZ, FHA, SS. Writing—review and editing: SS, RK, RS, AK, MA. Supervision: SS, RK, RS, AK, MA. Project administration: SS, RK, RS, AK, MA. Funding acquisition: SS, RK, RS, AK, MA. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Kahtan A. Mohammed or Shubham Sharma.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have read and approved this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, K.A., Kareem, A., Alkhafaji, M.A. et al. Impact of precursor type on physical, morphological, microstructural, and optical properties of CdZnS nanoparticles for photodegradation applications. J Mater Sci: Mater Electron 34, 1932 (2023). https://doi.org/10.1007/s10854-023-11320-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11320-x

Navigation