Skip to main content

Advertisement

Log in

Enhanced power factor and mechanically robust thermoelectric β-FeSi2 material synthesis by a suitable doping approach

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

β-FeSi2 is a potential, inexpensive and stable thermoelectric material for intermediate-temperature range thermoelectric power-generating devices applications. Due to their inherent adoption for converting n- and p-type by adding appropriate doping elements, β-FeSi2 materials have been intensively explored for several decades of thermoelectric research. However, its complex processing route and low figure-of-merit values limit its applications in TEGs. The present study attempts to develop a simple and effective processing method for synthesizing p- and n-type β-FeSi2 material for thermoelectric power generators (TEGs) and the synthesized materials characterized for their thermoelectric and mechanical compatibility. The synthesized p- and n-type β-FeSi2 material has resulted in enhanced thermoelectric performance with an excellent mechanical strength of ≃10 GPa, using a suitable doping approach. The synthesized semiconducting β-FeSi2 material possesses p- and n-type conduction and imparted substantial enhancement in mechanical strength, which affirms the materials’ integrity in thermoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. A. Nozariasbmarz, A. Agarwal, Z.A. Coutant, M.J. Hall, J. Liu, R. Liu, A. Malhotra, P. Norouzzadeh, M.C. Öztürk, V.P. Ramesh, Y. Sargolzaeiaval, F. Suarez, D. Vashaee, Jpn. J. Appl. Phys. 56, 0504 (2017)

    Article  Google Scholar 

  2. A.T. Burkov, Phys. Status Solidi Appl. Mater. Sci. (2018). https://doi.org/10.1002/pssa.201800105

    Article  Google Scholar 

  3. W. di Liu, Z.G. Chen, J. Zou, Adv. Energy Mater. 8, 1800775 (2018)

    Article  Google Scholar 

  4. G. Kim, H. Shin, J. Lee, W. Lee, Metals Mater. Int. 27, 2205–2219 (2020)

    Article  Google Scholar 

  5. S. Choudhary, S. Muthiah, S.R. Dhakate, Mater. Res. Bull. 128, 110875 (2020)

    Article  CAS  Google Scholar 

  6. S. Choudhary, S. Muthiah, S.R. Dhakate, ACS Appl. Energy Mater. 5, 549 (2022)

    Article  CAS  Google Scholar 

  7. C. Prajapati, S. Muthiah, M. Navaneethan, N.K. Upadhyay, R. Shyam, S.R. Dhakate, ACS Appl. Energy Mater. 5, 4698–4706 (2022)

    Article  CAS  Google Scholar 

  8. S.J. Clark, H.M. Al-Allak, S. Brand, R.A. Abram, Phys. Rev. B 58, 10389 (1998)

    Article  CAS  Google Scholar 

  9. M. Umemoto, Mater. Trans. JIM 36, 373–383 (1995)

    Article  CAS  Google Scholar 

  10. L.V. Dobysheva, Scr. Mater. 133, 37–40 (2017)

    Article  CAS  Google Scholar 

  11. J. Chai, C. Ming, X. Du, P. Qiu, Y.Y. Sun, L. Chen, Phys. Chem. Chem. Phys. 21, 10497–10504 (2019)

    Article  CAS  Google Scholar 

  12. N. Liu, S.E. Rezaei, W.A. Jensen, S. Song, Z. Ren, K. Esfarjani, M. Zebarjadi, J.A. Floro, Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201903157

    Article  Google Scholar 

  13. A.B.A. Zaik, F.L.B.M. Redzuan, S.A.Z.B.S. Salim, A.F.B. Mohammad, M.F.B.M. Yakub, M. Takeda, Mater. Today Proc. 65, 2979–2985 (2022)

    Article  Google Scholar 

  14. Priyanka, S. Muthiah, Ceram. Int. 48, 29366 (2022)

    Article  CAS  Google Scholar 

  15. K. Han, M. Saito, J. Xia, I. Ohnuma, R. Kainuma, J. Alloys Compd. 919, 165810 (2022)

    Article  CAS  Google Scholar 

  16. L. Abbassi, D. Mesguich, L. Coulomb, G. Chevallier, R. Aries, C. Estournès, E. Flahaut, R. Viennois, M. Beaudhuin, J. Alloys Compd. 902, 163683 (2022)

    Article  CAS  Google Scholar 

  17. V.S. Poddar, N.B. Dhokey, Trans. Indian Inst. Metals 72, 2711 (2019)

    Article  CAS  Google Scholar 

  18. Y. Li, G. Wang, M. Akbari-Saatlu, M. Procek, H.H. Radamson, Front. Mater. (2021). https://doi.org/10.3389/fmats.2021.611078

    Article  Google Scholar 

  19. M. Noroozi, G. Jayakumar, K. Zahmatkesh, J. Lu, L. Hultman, M. Mensi, S. Marcinkevicius, B. Hamawandi, M.Y. Tafti, A.B. Ergül, Z. Ikonic, M.S. Toprak, H.H. Radamson, ECS J. Solid State Sci. Technol. 6, Q11 (2017)

    Article  Google Scholar 

  20. L. Abbassi, D. Mesguich, D. Berthebaud, S. le Tonquesse, B. Srinivasan, T. Mori, L. Coulomb, G. Chevallier, C. Estournès, E. Flahaut, R. Viennois, M. Beaudhuin, Nanomaterials 11, 2852 (2021)

    Article  CAS  Google Scholar 

  21. F. Dąbrowski, Ł Ciupiński, J. Zdunek, W. Chromiński, M. Kruszewski, R. Zybała, A. Michalski, K.J. Kurzydłowski, Arch. Metall. Mater. 66, 1157 (2021)

    Google Scholar 

  22. K. Akiyama, T. Kadowaki, Y. Hirabayashi, H. Funakubo, J. Cryst. Growth 468, 744 (2017)

    Article  CAS  Google Scholar 

  23. S. Sen, N. Gogurla, P. Banerji, P.K. Guha, P. Pramanik, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 200, 28 (2015)

    Article  CAS  Google Scholar 

  24. S. le Tonquesse, Z. Verastegui, H. Huynh, V. Dorcet, Q. Guo, V. Demange, C. Prestipino, D. Berthebaud, T. Mori, M. Pasturel, ACS Appl. Energy Mater. 2, 8525 (2019)

    Article  Google Scholar 

  25. S. Sugihara, K. Morikawa, Mater. Trans. 52, 1526 (2011)

    Article  CAS  Google Scholar 

  26. M. Mohebali, Y. Liu, L. Tayebi, J.S. Krasinski, D. Vashaee, Renew. Energy 74, 940 (2015)

    Article  CAS  Google Scholar 

  27. F. Dąbrowski, Ł Ciupiński, J. Zdunek, J. Kruszewski, R. Zybała, A. Michalski, K.J. Kurzydłowski, Mater. Today Proc. 8, 531 (2019)

    Article  Google Scholar 

  28. T. Pandey, D.J. Singh, D. Parker, A.K. Singh, J. Appl. Phys. 114, 153704 (2013)

    Article  Google Scholar 

  29. G. Behr, J. Werner, G. Weise, A. Heinrich, A. Burkov, C. Gladun, Phys. Status Solidi (a) 160, 549 (1997)

    Article  CAS  Google Scholar 

  30. E. Arushanov, E. Arushanov, H. Lange, J. Werner, Phys. Status Solidi (a) 166, 853 (1998)

    Article  CAS  Google Scholar 

  31. X. Du, P. Qiu, J. Chai, T. Mao, P. Hu, J. Yang, Y.Y. Sun, X. Shi, L. Chen, ACS Appl. Mater. Interfaces 12, 12901 (2020)

    Article  CAS  Google Scholar 

  32. X. Du, P. Hu, T. Mao, Q. Song, P. Qiu, X. Shi, L. Chen, ACS Appl. Mater. Interfaces 11, 32151 (2019)

    Article  CAS  Google Scholar 

  33. M. Ito, H. Nagai, E. Oda, S. Katsuyama, K. Majima, J. Appl. Phys. 91, 2138 (2002)

    Article  CAS  Google Scholar 

  34. H.Y. Chen, X.B. Zhao, C. Stiewe, D. Platzek, E. Mueller, J. Alloys Compd. 433, 338 (2007)

    Article  CAS  Google Scholar 

  35. X. Qu, S. Lü, J. Hu, Q. Meng, J. Alloys Compd. 509, 10217 (2011)

    Article  CAS  Google Scholar 

  36. Z. He, D. Platzek, C. Stiewe, H. Chen, G. Karpinski, E. Müller, J. Alloys Compd. 438, 303 (2007)

    Article  CAS  Google Scholar 

  37. S.W. Kim, M.K. Cho, Y. Mishima, D.C. Choi, Intermetallics 11, 399 (2003)

    Article  CAS  Google Scholar 

  38. J.I. Tani, H. Kido, Jpn. J. Appl. Phys. 40, 3236 (2001)

    Article  CAS  Google Scholar 

  39. P. Rajasekar, A.M. Umarji, Intermetallics 89, 57 (2017)

    Article  CAS  Google Scholar 

  40. F.L.B. Mohd Redzuan, M. Ito, M. Takeda, Intermetallics 108, 19 (2019)

    Article  Google Scholar 

  41. H.Y. Chen, X.B. Zhao, T.J. Zhu, Y.F. Lu, H.L. Ni, E. Müller, A. Mrotzek, Intermetallics 13, 704 (2005)

    Article  CAS  Google Scholar 

  42. X.B. Zhao, H.Y. Chen, E. Müller, C. Drasar, Appl. Phys. A Mater. Sci. Process 80, 1123 (2005)

    Article  CAS  Google Scholar 

  43. M. Komabayashi, K.I. Hijikata, S. Ido, Jpn. J. Appl. Phys. 30, 1906 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Director, CSIR-National Physical Laboratory, India is greatly acknowledged for the motivation, encouragement, and experimental facility support. The technical assistance of Mr. R. Shyam and Dr. Naval K. Upadhyay is greatly acknowledged. Ms. Priyanka Sangwan acknowledged the CSIR-HRDG, New Delhi and AcSIR, Ghaziabad, India, for the Senior Research Fellowship (SRF).

Author information

Authors and Affiliations

Authors

Contributions

PS: Investigation, Methodology, Writing—Original Draft. SM: Conceptualization, Methodology, Writing—Review & Editing, Investigation.

Corresponding author

Correspondence to Saravanan Muthiah.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 57 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangwan, P., Muthiah, S. Enhanced power factor and mechanically robust thermoelectric β-FeSi2 material synthesis by a suitable doping approach. J Mater Sci: Mater Electron 34, 1879 (2023). https://doi.org/10.1007/s10854-023-11283-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11283-z

Navigation