Skip to main content

Advertisement

Log in

Characterizing the properties of Bi2O3–TeO2–CdO glasses: a multidimensional investigation of their structure, thermal behaviour, optical properties, and gamma ray shielding capability

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi2O3–TeO2–CdO glasses’ structural, thermal, optical, and gamma ray shielding behaviour were studied. Raman spectroscopy revealed that the glasses include BiO3, BiO6, TeO4, TeO3 units as well as CdO metal oxide clusters. The glasses lost just a small percentage of their original weight (less than 2%) on heating upto 800 °C, indicating that they can survive extreme heat without suffering any major changes to their structure or capabilities. The glass transition temperature (Tg) drops from 455 to 408 °C when Bi2O3 is added. The thermal profile of the glasses shows two exothermic peaks. As the Bi2O3 concentration in the samples rose, the indirect band gap energy dropped from 3.066 to 2.951 eV. With the use of the Phy-X program, the radiation shielding parameters have been calculated for the prepared glasses for energies ranging from 0.015 to 15 MeV. The linear attenuation coefficient (LAC) is high at 0.015 MeV (varied between 485.4 and 538.8 cm−1 for CTB4 glass, which is the glass with the largest percentage of Bi2O3, demonstrates the highest levels of LAC. The enhancement in the LAC due to the inclusion of Bi2O3 is observed in the prepared glasses. The enhancement in LAC is more pronounced at lower energies, especially below 0.03 MeV. From the effective atomic number data, increasing the amount of Bi2O3 in the glasses results in improved radiation shielding efficacy, particularly at lower energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. G. Pintori, E. Cattaruzza, XPS/ESCA on glass surfaces: a useful tool for ancient and modern materials. Opt. Mater. X 13, 100108 (2022)

    CAS  Google Scholar 

  2. M.I. Abualsayed, Radiation attenuation attributes for BaO–TiO2–SiO2–GeO2 glass series: a comprehensive study using Phy-X software. Radiochim. Acta 111(3), 211–216 (2023)

    Article  CAS  Google Scholar 

  3. A.H. Almuqrin, M.I. Sayyed, A. Kumar, B.O. El-bashir, I. Akkurt, Optical, mechanical properties and gamma ray shielding behavior of TeO2–Bi2O3–PbO–MgO–B2O3 glasses using FLUKA simulation code. Opt. Mater. 113, 110900 (2021)

    Article  CAS  Google Scholar 

  4. M.I. Sayyed, A.H. Almuqrin, A. Kumar, J.F.M. Jecong, I. Akkurt, Optical, mechanical properties of TeO2–CdO–PbO–B2O3 glass systems and radiation shielding investigation using EPICS2017 library. Optik 242, 167342 (2021)

    Article  CAS  Google Scholar 

  5. H. Aljawhara, M.I. Almuqrin, N.S. Sayyed, S.D. Prabhu, Kamath, Influence of Bi2O3 on mechanical properties and radiation-shielding performance of lithium zinc bismuth silicate glass system using Phys-X software. Materials. 15, 1327 (2022)

    Article  Google Scholar 

  6. M.S. Al-Buriahi, T. Kavas, E. Kavaz, R. Kurtulus, I.O. Olarinoye, Recycling potential of cathode ray tubes (CRTs) waste glasses based on Bi2O3 addition strategies. Waste Manag. 148, 43–49 (2022). https://doi.org/10.1016/j.wasman.2022.04.033

    Article  CAS  Google Scholar 

  7. M.I. Sayyed, The role of Bi2O3 on radiation shielding characteristics of ternary bismuth tellurite glasses. Optik 270, 169973 (2022)

  8. M.I. Sayyed, N.S. Prabhu, J.F.M. Jecong, S.D. Kamath, The mechanical and radiation shielding characteristics of the Li2O–Bi2O3–CdO–B2O3 glass system after swapping Li2O with Bi2O3. Optik 258, 168950 (2022)

    Article  CAS  Google Scholar 

  9. S. Kaewjaeng, N. Chanthima, J. Thongdang, S. Reungsri, S. Kothan, J. Kaewkhao, Synthesis and radiation properties of Li2O–BaO–Bi2O3–P2O5 glasses. Mater. Today  Proc. 43, 2544–2553 (2021)

    Article  CAS  Google Scholar 

  10. R.A.H. El-Mallawany, Tellurite glasses handbook: physical properties and data, 2nd edn. (Routledge, Abingdon, 2016)

    Book  Google Scholar 

  11. M. Çelikbilek, A.E. Ersundu, N. Solak, S. Aydin, Crystallization kinetics of the tungsten–tellurite glasses. J. Non-cryst. Solids. 357, 88–95 (2011)

    Article  Google Scholar 

  12. A. Sharma, M.I. Sayyed, O. Agar, H.O. Tekin, Simulation of shielding parameters for TeO2-WO3-GeO2 glasses using FLUKA code. Results Phys 13, 102199 (2019)

  13. S. Sharma, Metallic glass–based nanocomposites (CRC Press, Boca Raton, 2020). https://doi.org/10.1201/9780429021992

    Book  Google Scholar 

  14. M.S. Al-Buriahi, V.P. Singh, A. Alalawi, C. Sriwunkum, B.T. Tonguc, Mechanical features and radiation shielding properties of TeO2–Ag2O–WO3 glasses. Ceram. Int. 46(10), 15464–15472 (2020)

    Article  CAS  Google Scholar 

  15. K.A. Naseer, K. Marimuthu, M.S. Al-Buriahi, A. Alalawi, H.O. Tekin, Influence of Bi2O3 concentration on barium–telluro–borate glasses: physical, structural and radiation-shielding properties. Ceram. Int. 47(1), 329–340 (2020)

    Article  Google Scholar 

  16. M.S. Al-Buriahi, B. Tonguç, U. Perisanoglu, E. Kavaz, The impact of Gd2O3 on nuclear safety proficiencies of TeO2–ZnO–Nb2O5 glasses: a GEANT4 Monte Carlo study. Ceram. Int. 46, 23347–23356 (2020)

    Article  CAS  Google Scholar 

  17. D.A. Aloraini, A. Kumar, A.H. Almuqrin, M.I. Sayyed, Effect of adding SrO, TeO2, PbO, and Bi2O3 heavy metal oxides on the optical and gamma ray shielding properties of Li2O–K2–B2O3 glasses. Optik 247, 167848 (2021)

    Article  CAS  Google Scholar 

  18. S.A.M. Issa, A.M.A. Mostafa, Effect of Bi2O3in borate–tellurite–silicate glass system for development of gamma-rays shielding materials. J. Alloys Compd. 695, 302–310 (2017). https://doi.org/10.1016/j.jallcom.2016.10.207

    Article  CAS  Google Scholar 

  19. J. Anjaiah, C. Laxmikanth, Optical properties of neodymium ion doped lithium borate glasses. J. Pure Appl. Ind. Phys. 5(6), 173–183 (2015)

    Google Scholar 

  20. R. Vijaya Kumar, P. Gayathri Pavani, B. Ramesh, M. Shareefuddin, K. Siva, Kumar, Structural studies of xLi2O–(40–x)Bi2O3–20CdO–40B2Oglasses. Opt. Mater. 35(12), 2267–2274 (2013)

    Article  CAS  Google Scholar 

  21. A. Vegiri, C.P.E. Varsamis, Clustering and percolation in lithium borate glasses. J. Chem. Phys. 120(16), 7689–7695 (2004)

    Article  CAS  Google Scholar 

  22. N. Shinkai, R. Bradt, G.E. Rindone, Elastic modulus and fracture toughness of ternary PbO–ZnO–B2O3 glasses. J. Am. Ceram. Soc. 65(2), 123–126 (1982)

    Article  CAS  Google Scholar 

  23. S. Sindhu, S. Sanghi, S. Rani, A. Agarwal, V.P. Seth, Modification of structure and electrical conductivity of cadmium borate glasses in the presence of V. Mater. Chem. Phys. 2O5(2), 236–243 (2008)

    Article  Google Scholar 

  24. M.E. Zayas, H. Arizpe, S.J. Castillo, F. Medrano, G.C. Diaz, J.M. Rincon et al., Glass formation area and structure of glassy materials obtained from ZnO–CdO–TeO2 ternary system. Phys. Chem. Glasses. 46, 46–50 (2005)

    CAS  Google Scholar 

  25. H. Aljawhara, A. Almuqrin, H.J. Kumar, M.I. Alasali, Sayyed, Impact of high concentration of the Bi2O3 on the physical, mechanical and gamma ray shielding capability of the Bi2O3–TeO2–CdO glass system. J. Mater. Sci. Mater. Electron. 34, 1112 (2023)

    Article  Google Scholar 

  26. V. Bhatia, D. Kumar, A. Kumar, V. Mehta, S. Chopra, A. Vij, S.M.D. Rao, S.P. Singh, Mixed transition and rare earth ion doped borate glass: structural, optical and thermoluminescence study. J. Mater. Sci. Mater. Electron. 30, 677–686 (2019)

    Article  CAS  Google Scholar 

  27. F.F. Al-Harbi, N.S. Prabhu, M.I. Sayyed, H. Aljawhara, A. Almuqrin, S.D. Kumar, Kamath, Evaluation of structural and gamma ray shielding competence of Li2O–K2O–B2O3–HMO (HMO = SrO/TeO2/PbO/Bi2O3) glass system. Optik 248, 168074 (2021)

    Article  CAS  Google Scholar 

  28. D. Souri, Z.E. Tahan, A new method for the determination of optical band gap and the nature of optical transitions in semiconductors. Appl. Phys. B 119, 273–279 (2015)

    Article  CAS  Google Scholar 

  29. B.M. Alotaibi, M.I. Sayyed, A. Kumar, M. Alotiby, K.A. Mahmoud, H.A. Al-Yousef, N.A.M. Alsaif, Y. Al-Hadeethi, Fabrication of TeO2-doped strontium borate glasses possessing optimum physical, structural, optical and gamma ray shielding properties. Eur. Phys. J. Plus. 136, 468 (2021)

    Article  CAS  Google Scholar 

  30. Z. Pan, D.O. Henderson, S.H. Morgan, A Raman investigation of lead haloborate glasses. J. Chem. Phys. 101, 1767–1774 (1994)

    Article  CAS  Google Scholar 

  31. B. Mihailova, M. Gospodinov, L. Konstantinov, Raman spectroscopy study of sillenites. I. comparison between Bi12(Si,Mn)O20 single crystals. J. Phys. Chem. Solids. 60, 1821–1827 (1999)

    Article  CAS  Google Scholar 

  32. B. Mihailova, G. Bogachev, V. Marinova, L. Konstantinov, Raman spectroscopy study of sillenites. II. Effect of doping on Raman spectra of Bi0TiO20. J. Phys. Chem. Solids. 60, 1829–1834 (1999)

    Article  CAS  Google Scholar 

  33. V. Sreenivasulu, G. Upender, V.C. Mouli, M. Prasad, Structural, thermal and optical properties of TeO2–ZnO–CdO–BaO glasses doped with VO2+. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 148, 215–222 (2015)

    Article  CAS  Google Scholar 

  34. A. Ashrafi, Raman-active wurtzite CdO nanophase and phonon signatures in CdO/ZnO heterostructures fabricated by non-equilibrium laser plasma ablation and stress control. Appl. Phys. Lett. 98, 133119 (2011)

    Article  Google Scholar 

  35. T.M. Khan, T. Shahid, M. Zakria, R.I. Shakoor, Optoelectronic properties and temperature dependent mechanisms of composite-hydroxide-mediated approach for the synthesis of CdO nanomaterials. Electron. Mater. Lett. 11, 366–373 (2015)

    Article  CAS  Google Scholar 

  36. F.D. Hardcastle, I.E. Wachs, The molecular structure of bismuth oxide by Raman spectroscopy. J. Solid State Chem. 97, 319–331 (1992)

    Article  CAS  Google Scholar 

  37. H.T. Fan, S.S. Pan, X.M. Teng, C. Ye, Li,structure and thermal stability of δ-Bi2O3 thin films deposited by reactive sputtering. J. Phys. D Appl. Phys. 39, 1939–1943 (2006)

    Article  CAS  Google Scholar 

  38. I.S. Mustafa, H.M. Kamari, W.M.D.W. Yusoff, S.A. Aziz, A.A. Rahma, Structural and optical properties of lead-boro-tellurrite glasses induced by gamma-ray. Int. J. Mol. Sci. 14(2), 3201–3214 (2013). https://doi.org/10.3390/ijms14023201

    Article  CAS  Google Scholar 

  39. T.R. Hart, R.L. Aggarwal, B. Lax, Temperature dependence of Raman scattering in silicon. Phys. Rev. B 1, 638 (1970)

    Article  Google Scholar 

  40. El S. Yousef, S.F. Mansour, M.Y. Hassaan, A.M. Emara, Synthesis optical properties of novel TeO2 based glasses. Optik. 127, 8933–8939 (2016). https://doi.org/10.1016/j.ijleo.2016.06.113

    Article  CAS  Google Scholar 

  41. J. Lin, W. Huang, Z. Sun, C.S. Ray, D.E. Day, Structure and non-linear optical performance of TeO2–Nb2O5–ZnO glasses. J. Non-cryst. Solids. 336, 189–194 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.02.007

    Article  CAS  Google Scholar 

  42. H. Ticha, J. Schwarz, L. Tichy, Raman spectra and optical band gap in some PbO–ZnO–TeO2 glasses. Mater. Chem. Phys. 237, 121834 (2019)

    Article  CAS  Google Scholar 

  43. A. Kaur, A. Khanna, V.G. Sathe, F. Gonzalez, B. Ortiz, Optical, thermal, and structural properties of Nb2O5–TeO2 and WO3–TeO2 glasses. Phase Transit. 86, 598–619 (2013). https://doi.org/10.1080/01411594.2012.727998

    Article  CAS  Google Scholar 

  44. G. Upender, S. Ramesh, M. Prasad, V.G. Sathe, V.C. Mouli, Optical band gap, glass transition temperature and structural studies of (100–2x)TeO2xAg2O–xWO3 glass system. J. Alloys Compd. 504, 468–474 (2010). https://doi.org/10.1016/j.jallcom.2010.06.006

    Article  CAS  Google Scholar 

  45. H. Fares, I. Jlassi, H. Elhouichet, M. Férid, Investigations of thermal, structural and optical properties of tellurite glass with WO3 adding. J. Non-cryst. Solids (2014). https://doi.org/10.1016/j.jnoncrysol.2014.04.012

    Article  Google Scholar 

  46. M.S. Dahiya, S. Khasa, A. Agarwal, Structural, optical and thermal properties of transition metal ions doped bismuth borate glasses. Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 57, 45–52 (2016)

    Article  Google Scholar 

  47. M. Udovic, P. Thomas, A. Mirgorodsky, O. Durand, M. Soulis, O. Masson, T. Merle-Méjean, J.C. Champarnaud-Mesjard, Thermal characteristics, Raman spectra and structural properties of new tellurite glasses within the Bi2O3–TiO2–TeO2 system. J. Solid State Chem. 179, 3252–3259 (2006)

    Article  CAS  Google Scholar 

  48. R.S. Kundu, S. Dhankhar, R. Punia, K. Nanda, N. Kishore, Bismuth modified physical, structural and optical properties of mid-IR transparent zinc boro-tellurite glasses. J. Alloys Compd. 587, 66–73 (2014)

    Article  CAS  Google Scholar 

  49. H.A.A. Sidek, S. Rosmawati, Z.A. Talib, M.K. Halimah, W.M. Daud, Synthesis and optical properties of ZnO–TeO2 glass system. Am. J. Appl. Sci. 6, 1489 (2009)

    Article  CAS  Google Scholar 

  50. A.E. Al-salami, E.R. Shaaban, A TEM study and non-isothermal crystallization kinetic of tellurite glass-ceramics. J. Mater. Sci. 45, 5929–5936 (2010)

    Article  Google Scholar 

  51. A. Šantić, A. Moguš-Milanković, K. Furić, M. Rajić-Linarić, C.S. Ray, D.E. Day, Structural properties and crystallization of sodium tellurite glasses. Croat. Chem. Acta 81, 559–567 (2008)

    Google Scholar 

  52. N. Berwal, S. Dhankhar, P. Sharma, R.S. Kundu, R. Punia, N. Kishore, Physical, structural and optical characterization of silicate modified bismuth–borate–tellurite glasses. J. Mol. Struct. 1127, 636–644 (2017)

    Article  CAS  Google Scholar 

  53. M. Abdel-Baki, F.A. Abdel-Wahab, F. El-Diasty, One-photon band gap engineering of borate glass doped with ZnO for photonics applications. J. Appl. Phys. 111, 073506 (2012)

    Article  Google Scholar 

  54. S. Sindhu, S. Sanghi, A. Agarwal, V.P. Seth, N. Kishore, Effect of Bi2O3 content on the optical band gap, density and electrical conductivity of MO–Bi2O3–B2O3 (M = Ba, Sr) glasses. Mater. Chem. Phys. 90, 83–89 (2005)

    Article  CAS  Google Scholar 

  55. M.H.M. Zaid, K.A. Matori, S.H. Ab Aziz, H.M. Kamari, Z.A. Wahab, N. Effendy, I.M. Alibe, Comprehensive study on compositional dependence of optical band gap in zinc soda lime silica glass system for optoelectronic applications. J. NonCryst. Solids. 449, 107–112 (2016)

    Article  CAS  Google Scholar 

  56. Z.M. Elqahtani, M.I. Sayyed, A. Kumar, J.F.M. Jecong, A.H. Almuqrin, Impact of Bi2Oon optical properties and radiation attenuation characteristics of Bi2O3–Li2O–P2O5 glasses. Optik 248, 168081 (2021)

    Article  CAS  Google Scholar 

  57. N.B. Mohamed, A.K. Yahya, M.S.M. Deni, S.N. Mohamed, M.K. Halimah, H.A.A. Sidek, Effects of concurrent TeO2 reduction and ZnO addition on elastic and structural Properties of (90–x)TeO2–10Nb2O5–(x)ZnO glass. J. Non-cryst Solids 356, 1626–1630 (2010)

    Article  CAS  Google Scholar 

  58. V. Rajendran, N. Palanivelu, B.K. Chaudhuri, Characterisation of semiconducting V2O5–Bi2O3–TeO2 glasses through ultrasonic measurements. J. Non-cryst Solids 320, 195–209 (2003)

    Article  CAS  Google Scholar 

  59. Y. Wang, S. Dai, F. Chen, T. Xu, Q. Nie, Physical properties and optical band gap of new tellurite glasses within the TeO2–Nb2O5–Bi2O3 system. Mater. Chem. Phys. 113, 407–411 (2009)

    Article  CAS  Google Scholar 

  60. M.I. Erdem Sakar, M. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry 166, 108496 (2020)

    Article  Google Scholar 

  61. B. Speit Radiation-shielding glasses providing safety against electrical discharge and being resistant to discoloration (1991) Google Patents

  62. https://www.lemerpax.com/en/products/lead-glass-panels/?psafe_param=1&gad=1&gclid=Cj0KCQjw0IGnBhDUARIsAMwFDLlpNpoc1REQSlgNYTTtP94AU-ahafmgnscZ1BN8BQQMhhdBS8ezowgaAmU4EALw_wcB

Download references

Funding

The authors express their gratitude to the Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R57), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

DAA: Writing, Editing and Proof Reading; Funding Acquisition. AHA: Writing, Editing and Proof Reading; Funding Acquisition. MIS: Writing, Editing and Proof Reading, Conceptualization, Writing Original Draft. AK: Methodology; Writing Original Draft; Validation; Conceptualization; Data Analysis. SY: Methodology; Software; Validation, Data Curation; Validation; Conceptualization.

Corresponding authors

Correspondence to M. I. Sayyed or Ashok Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aloraini, D.A., Almuqrin, A.H., Sayyed, M.I. et al. Characterizing the properties of Bi2O3–TeO2–CdO glasses: a multidimensional investigation of their structure, thermal behaviour, optical properties, and gamma ray shielding capability. J Mater Sci: Mater Electron 34, 1795 (2023). https://doi.org/10.1007/s10854-023-11206-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11206-y

Navigation