Skip to main content
Log in

Impact of high concentration of the Bi2O3 on the physical, mechanical and gamma ray shielding capability of the Bi2O3–TeO2–CdO glass system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The primary objective to develop the high-density glasses have been fulfilled by replacing the TeO2 with Bi2O3 in the Bi2O3–TeO2–CdO glass system in the present work. Samples’ density (ρ) is large enough, ranging from 5.636 g/cm3 to 5.788 g/cm3. Due to the expansion of the network the molar volume (Vm) and oxygen molar volume increases and the oxygen packing density decreases. The elastic characteristics of the resulting glasses diminished with increasing Bi2O3 concentrations in the network structure. The radiation shielding parameters were presented between 0.122 and 1.458 MeV. The transmission factor (TF) for the glasses with thickness of 0.25 cm is around 50% at 0.245 MeV, while for the same glasses with thickness of 0.5 cm, we found that the TF is varied between 20 and 25%. The TF reaches a minimum of about 4–6% when the thickness is 1 cm. The TF data demonstrated that introducing more Bi2O3 into the samples leads to an improvement in the radiation shielding performance of the glasses. The effective atomic number (Zeff) values at 0.245 MeV are equal to 61.74, 63.03, 64.16, and 65.18 for A1–A4, respectively. The average HVL (\(\overline{HVL }\)) results showed that a thin sample less than 0.4 cm thick can be used to shield photons with energies between 0.245 and 0.344 MeV, while a shield with thickness 0.65 to 0.70 cm is needed to attenuate photons with energies between 0.411 and 0.444 MeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. R. Li, Gu. Yizhuo, G. Zhang, Z. Yang, M. Li, Z. Zhang, Radiation shielding property of structural polymer composite: Continuous basalt fiber reinforced epoxy matrix composite containing erbium oxide. Compos. Sci. Technol. 143, 67–74 (2017)

    Article  CAS  Google Scholar 

  2. Y. Karabul, O. Içelli, The assessment of usage of epoxy based micro and nano-structured composites enriched with Bi2O3 and WO3 particles for radiation shielding. Results in Phys. 26, 104423 (2021)

    Article  Google Scholar 

  3. S. Nazlıcan Ahin, B. Merve, Y. Karabul, M. Kılıç, Z.G. Ozdemir, Low cost radiation shielding material for low energy radiation applications: epoxy/yahyali stone composites. Prog. Nuc. Energy 135, 103703 (2021)

    Article  Google Scholar 

  4. M. Dong, X. Xue, He. Yang, Z. Li, Highly cost-effective shielding composite made from vanadium slag and boron-rich slag and its properties. Radiat. Phys. Chem. 141, 239–244 (2017)

    Article  CAS  Google Scholar 

  5. M. Dong, X. Xue, He. Yang, D. Liu, C. Wang, Z. Li, A novel comprehensive utilization of vanadium slag: as gamma ray shielding material. J. Hazard. Mater. 318, 751–757 (2016)

    Article  CAS  Google Scholar 

  6. Y. Al-Hadeethi, M.I. Sayyed, A comprehensive study on the effect of TeO2 on the radiation shielding properties of TeO2–B2O3–Bi2O3–LiF–SrCl2 glass system using Phy-X / PSD software. Ceram. Int. 46, 6136–6140 (2020)

    Article  CAS  Google Scholar 

  7. A. Saleh, Comparative shielding features for X/Gamma-rays, fast and thermal neutrons of some gadolinium silicoborate glasses. Prog. Nucl. Energy 154, 104482 (2022)

    Article  CAS  Google Scholar 

  8. M.I. Sayyed, K.A. Mahmoud, Simulation of the impact of Bi2O3 on the performance of gamma-ray protection for lithium zinc silicate glasses. Optik 257, 168810 (2022)

    Article  Google Scholar 

  9. I.S. Mahmoud, S.A.M. Issa, Yasser B. Saddeek, H.O. Tekin, T. Ozge Kilicoglu, M.I. Alharbi, T.T. ErguzelSayyed, R. Elsaman, Gamma, neutron shielding and mechanical parameters for lead vanadate glasses. Ceram Int. 45, 14058–14072 (2019)

    Article  CAS  Google Scholar 

  10. M.I. Sayyed, I.A. El-Mesady, A.S. Abouhaswa, A. Askin, Y.S. Rammah, Comprehensive study on the structural, optical, physical and gamma photon shielding features of B2O3-Bi2O3–PbO–TiO2 glasses using WinXCOM and Geant4 code. J. Mol. Struct. 1197, 656–665 (2019)

    Article  CAS  Google Scholar 

  11. M. Zubair, E. Ahmed, D. Hartanto, Comparison of different glass materials to protect the operators from gamma-rays in the PET using MCNP code. Radiat. Phys. Chem. 190, 109818 (2022)

    Article  CAS  Google Scholar 

  12. W. Chaiphaksa, P. Borisut, N. Chanthima, J. Kaewkhao, N.W. Sanwaranatee, Mathematical calculation of gamma rays interaction in bismuth gadolinium silicate glass using WinXCom program. Mater. Today: Proceedings 65, 2412–2415 (2022)

    CAS  Google Scholar 

  13. M.H.A. Mhareb, Physical, optical and shielding features of Li2O–B2O3–MgO–Er2O3 glasses co-doped of Sm2O3. Appl. Phys. A 126, 71 (2020)

    Article  CAS  Google Scholar 

  14. Y. Al-Hadeethi, M.I. Sayyed, BaO–Li2O–B2O3 glass systems: potential utilization in gamma radiation protection. Prog. Nucl. Energy 129, 103511 (2020)

    Article  CAS  Google Scholar 

  15. A.S. Abouhaswa, Esra Kavaz, Bi2O3 effect on physical, optical, structural and radiation safety characteristics of B2O3-Na2O–ZnO–CaO glass system. J. Non-Cryst. Solids 535, 119993 (2020)

    Article  CAS  Google Scholar 

  16. M. Rajesh, E. Kavaz, B.D. PrasadRaju, Photoluminescence, radiative shielding properties of Sm3+ ions doped fluoroborosilicate glasses for visible (reddish–orange) display and radiation shielding applications. Mater. Res. Bullet. 142, 111383 (2021)

    Article  CAS  Google Scholar 

  17. A.S. Abouhaswa, Esra Kavaz, A novel B2O3–Na2O–BaO–HgO glass system: Synthesis, physical, optical and nuclear shielding features. Ceram. Int. 46, 16166–16177 (2020)

    Article  CAS  Google Scholar 

  18. N. Chanthima, J. Kaewkhao, P. Limsuwan, Study of photon interactions and shielding properties of silicate glasses containing Bi2O3, BaO and PbO in the energy region of 1 keV to 100 GeV. Ann. Nucl. Energy 41, 119–124 (2012)

    Article  CAS  Google Scholar 

  19. S. Kaewjaeng, N. Chanthima, J. Thongdang, S. Reungsri, S. Kothan, J. Kaewkhao, Synthesis and radiation properties of Li2O-BaO-Bi2O3-P2O5 glasses. Mater. Today: Proceedings 43, 2544–2553 (2021)

    CAS  Google Scholar 

  20. M.I. Sayyed, S.A.M. Issa, H.O. Tekin, Y.B. Saddeek, Comparative study of gamma-ray shielding and elastic properties of BaO–Bi2O3–B2O3 and ZnO–Bi2O3–B2O3 glass systems. Mater. Chem. and Phys. 217, 11–22 (2018)

    Article  CAS  Google Scholar 

  21. I.G. Geidam, K.A. Matori, M.K. Halimah, K.T. Chan, F.D. Muhammad, M. Ishak, S.A. Umar, Oxide ion polarizabilities and gamma radiation shielding features of TeO2–B2O3–SiO2 glasses containing Bi2O3 using Phy-X/PSD software. Mater. Today Commun. 31, 103472 (2022)

    Article  CAS  Google Scholar 

  22. B. Aktas, A. Acikgoz, D. Yilmaz, S. Yalcin, K. Dogru, N. Yorulmaz, The role of TeO2 insertion on the radiation shielding, structural and physical properties of borosilicate glasses. J. Nucl. Mater. 563, 153619 (2022)

    Article  CAS  Google Scholar 

  23. M. Fidan, A. Acikgoz, G. Demircan, D. Yilmaz, B. Aktas, Optical, structural, physical, and nuclear shielding properties, and albedo parameters of TeO2–BaO–B2O3–PbO–V2O5 glasses. J. Phys. Chem. Solids 163, 110543 (2022)

    Article  CAS  Google Scholar 

  24. S.A. Tijani, S.M. Kamal, Y. Al-Hadeethi, M. Arib, M.A. Hussein, S. Wageh, L.A. Dim, Radiation shielding properties of transparent erbium zinc tellurite glass system determined at medical diagnostic energies. J. Alloys and Comp. 741, 293–299 (2018)

    Article  CAS  Google Scholar 

  25. M.I. Sayyed, R. El-Mallawany, Shielding properties of (100–x)TeO2-(x)MoO3 glasses. Mater. Chem. Phys. 201, 50–56 (2017)

    Article  CAS  Google Scholar 

  26. A. Makishima, J.D. Mackenzie, Direct calculations of young modulus of glass. J. Non-Crystall. Solids 12, 35–45 (1973)

    Article  CAS  Google Scholar 

  27. A. Makishima, J.D. Mackenzie, Calculation of Bulk modulus, shear modulus and Poisson’s ratio of glass. J. Non-Crystall. Solids 17, 147–157 (1975)

    Article  CAS  Google Scholar 

  28. S. Inaba, S. Oda, K. Morinaga, Heat capacity of oxide glasses at high temperature region. J. Non-Cryst. Solids 325, 258–266 (2003)

    Article  CAS  Google Scholar 

  29. A.H. Almuqrin, S. Yasmin, M.I. Sayyed, A. Kumar, Understanding the physical, optical and gamma ray shielding properties of the PbO–Bi2O3–CdO–B2O3 glass systems. Optik 270, 170052 (2022)

    Article  CAS  Google Scholar 

  30. R. Kurtulus, M.S. Buriahi, S.A.M. Issa, H.O. Tekin, T. Kavas, E. Kavaz, Physical, structural, mechanical and radiation shielding features of waste pharmaceutical glasses doped with Bi2O3. Optik 261, 169108 (2022)

    Article  CAS  Google Scholar 

  31. S.A.M. Issa, A. Kumar, M.I. Sayyed, M.G. Dong, Y. Elmahroug, Mechanical and gamma-ray shielding properties of TeO2–ZnO–NiO glasses. Mater. Chem. and Phys. 212, 12–20 (2018)

    Article  CAS  Google Scholar 

  32. G.A. Saunders, T. Brennan, M. Acet, M. Cankurtaran, H.B. Senin, H.A.A. Sidek, M. Federico, Elastic and non-linear acoustic properties and thermal expansion of cerium metaphosphate glasses. J. Non-Cryst. Solids 282, 291–305 (2001). https://doi.org/10.1016/S0022-3093(01)00311-8

    Article  CAS  Google Scholar 

  33. S.H. Alazoumi, H.A.A. Sidek, M.K. Halimah, K.A. Matori, M.H.M. Zaid, A.A. Abdulbaset, Synthesis and elastic properties of ternary ZnO–PbO–TeO glasses. Chalcogenide Lett. 14, 303–320 (2017)

    Google Scholar 

  34. E. Şakar, Ö.F. Özpolat, M.I. Bünyamin Alım, M.K. Sayyed, Phy-X / PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radi. Phys. and Chem. 166, 108496 (2020)

    Article  Google Scholar 

  35. S. Yasmin, B.S. Barua, M.U. Khandaker, M.A. Rashid, D.A. Bradley, M.A. Olatunji, M. Kamal, Studies of ionizing radiation shielding effectiveness of silica-based commercial glasses used in Bangladeshi dwellings. Results in Phys. 9, 541–549 (2018)

    Article  Google Scholar 

  36. S. Yasmin, Z.S. Rozaila, M.U. Khandaker, B.S. Barua, F.U.Z. Chowdhury, M.A. Rashid, D.A. Bradley, The radiation shielding offered by the commercial glass installed in Bangladeshi dwellings. Radiat. Eff. Def. Solids 173(7–8), 657–672 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R2), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

AHA: writing, editing and proof reading; funding acquisition. AK: writing original draft; validation, conceptualization; data analysis. HJA: Editing and proof reading, validation, conceptualization. MIS: writing, editing and proof reading, conceptualization, writing original draft.

Corresponding author

Correspondence to Ashok Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almuqrin, A.H., Kumar, A., Alasali, H.J. et al. Impact of high concentration of the Bi2O3 on the physical, mechanical and gamma ray shielding capability of the Bi2O3–TeO2–CdO glass system. J Mater Sci: Mater Electron 34, 1112 (2023). https://doi.org/10.1007/s10854-023-10529-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10529-0

Navigation