Skip to main content
Log in

Optoelectronic properties and temperature dependent mechanisms of composite-hydroxide-mediated approach for the synthesis of CdO nanomaterials

  • Original Article
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

We report the successful synthesis of polycrystalline CdO nanomaterials at various process temperatures in the range from (180°C - 300°C) by a single step, conventionally simple and cost effective approach. The approach is based on hydroxide melts as solvents and termed as composite-hydroxide-mediated (CHM) approach. The effect of growth temperature on particle nucleation and consequently on the fabrication and purity of CdO nanostructures is investigated for a constant reaction time (24 h). As revealed by x-ray diffraction and Raman spectroscopy, CdO nanostructures can be reproduced in high purity with no traces by varying the synthesis temperature. These nanostructures have random orientations and non-uniform distribution with average crystallite sizes varying from 27 nm down to 7 nm. A study of the optical properties, based on photoluminescence, has demonstrated that emission peaks of CdO nanomaterials are centered at 491 nm and 528 nm which signifies purity of the product from the CHM approach. The direct bandgap determined for CdO (2.49 eV - 2.51 eV) exhibits a blue-shift with process temperature. The photoluminescence peak at 491 nm is attributed to near band-edge emission. Based on experimental results size and morphology manipulation, and possible growth mechanisms for the synthesized product are proposed with CHM at low temperature and without surfactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Guo, C. F. Wang, and J. S. Liu, Adv. Mater. Sci. 864-867, 625 (2014).

    Google Scholar 

  2. P. A. Radi, A. G. Brito-Madurro, J. M. Madurro, and N. O. Dantas, Brazilian J. Phys. 36, 412 (2006).

    Article  Google Scholar 

  3. J. S. Cruz, G. T. Delgado, R. C. Perez, S. J. Sandoval, O. J. Sandoval, C. I. Z. Romero, J. M. Marin, and O. Z. Angel,Thin Solid Films 83, 493 (2005).

    Google Scholar 

  4. G. R. Khayati, H. Dalvand, E. Darezereshki, and A. Irannejad,Mate. Lett. 115, 272 (2014).

    Article  Google Scholar 

  5. A. S. Kamble, R. C. Pawar, J. Y. Patil, S. S. Suryavanshi, and P. S. Patil, J. Alloy. Compd. 509, 1035 (2011).

    Article  Google Scholar 

  6. D. Lamb and S. J. C. Irvine, Thin Solid Films 518, 1222(2009).

    Article  Google Scholar 

  7. H. Song, R. M. Rioux, J. D. Hoefelmeyer, R. Komor, K. Niesz, M. Grass, P. Yang, and G. A. Somorjai, J. Am.Chem. Soc. 128, 3027 (2006).

    Article  Google Scholar 

  8. Y. J. Tian, Y. P. Jia, Y. J. Bao, and Y. F. Chen, Diam. Rel.Mater. 16, 302 (2007).

    Article  Google Scholar 

  9. C. Hu, Y. Xi, H. Liu, and Z. L. Wang, J. Mater. Chem. 19,858 (2009).

    Article  Google Scholar 

  10. F. Y. Li, C. G. Hu, Y. F. Xiong, B. Y. Wan, W. Yan, and M.C. Zhang, J. Phys. Chem. C 112, 16130 (2008).

    Google Scholar 

  11. N. Wang, C. G. Hu, C. H. Xia, B. Feng, Z. W. Zhang, Y. Xi, and Y. F. Xiong, Appl. Phys. Lett. 90, 16311 (2007).

    Google Scholar 

  12. A. Tadjarodi, M. Imani, and H. Kerdari, J. Nanostructures 2, 127 (2012).

    Google Scholar 

  13. A. Tadjarodi and M. Imani, Mater. Lett. 65, 1025 (2011).

    Article  Google Scholar 

  14. T. J. Kuo and M. H. Huang, J. Phys. Chem. 110, 13717(2006).

    Article  Google Scholar 

  15. Q. Peng, G. W. Cong, S. C. Qu, and Z. G. Wang, Nanotechnology 16, 1469 (2005).

    Article  Google Scholar 

  16. X. Chen and S. S. Mao, Chem. Rev. 107, 2891 (2007).

    Article  Google Scholar 

  17. Y. J. Chen, J. B. Li, Q. M. Wei, and H. Z. Zhai, J. Cryst.Growth 224, 244 (2001).

    Article  Google Scholar 

  18. W. E. Buhro and V. L. Colvin, Nat. Mater. 2, 138 (2003).

    Article  Google Scholar 

  19. X. Peng, L. Manna, P. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, Nature 404, 59 (2000).

    Article  Google Scholar 

  20. S. B. Jambure and C. D. Lokhande, Mater. Lett. 106, 133(2013).

    Article  Google Scholar 

  21. R. Cusco, J. Ibanez, N. D. Amador, L. Artus, J. Z. Perez, and V. M. Sanjose, J. Appl. Phys. 107, 063519 (2010).

    Article  Google Scholar 

  22. V. Srihari, V. Sridharan, T. R. Ravindran, S. Chandra, A. K. Arora, V. S. Sastry, and C. S. Sundar, Solid State Commun.19, 315 (1976).

    Article  Google Scholar 

  23. S. H. Shim and S. Rekhi, Phys. Rev. B 74, 024107 (2006).

    Article  Google Scholar 

  24. N. Singh, S. Charan, K. R. Patil, A. K. Viswanath, and P. K. Khann, Mater. Lett. 60, 3492 (2006).

    Article  Google Scholar 

  25. M. Ristic, S. Popovic, and S. Music, Mater. Lett. 58, 2494(2004).

    Article  Google Scholar 

  26. A. Tadjarodi and M. Imani, Mater. Lett. 65, 1025 (2011).

    Article  Google Scholar 

  27. X. Wu. R. Wang, B. Zou, L. Wang, S. Liu, and J. Xu, J.Mater. Res. 13, 604 (1998).

    Article  Google Scholar 

  28. G. Moumita and C. N. R. Rao, Chem. Phys. Lett. 393, 493(2004).

    Article  Google Scholar 

  29. M. Zaien, K. Omar, and Z. Hassan, Optoelectron. Adv.Mater.- Rapid Commun. 5, 982 (2011).

    Google Scholar 

  30. D. J. Seo, J. Korean Phys. Soc. 45, 1575 (2004).

    Google Scholar 

  31. J. S. Liu, C. B. Zhao, Z. Q. Li, L. Yu, Y. C. Li, S. Q. Gu, A. Cao, W. N. Jiang, J. N. Liu, and C. T. Yang, Adv. Mater.Res. 228-229, 580 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taj Muhammad Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, T.M., Shahid, T., Zakria, M. et al. Optoelectronic properties and temperature dependent mechanisms of composite-hydroxide-mediated approach for the synthesis of CdO nanomaterials. Electron. Mater. Lett. 11, 366–373 (2015). https://doi.org/10.1007/s13391-015-4134-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-4134-x

Keywords

Navigation