Skip to main content
Log in

Green, nonchemical route for the synthesis of MnWO4 nanostructures, evaluation of their photocatalytic and electrochemical performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This research article presents the synthesis of MnWO4 nanoparticles using a combination of MnCl2 and Na2WO4·2H2O as precursors, with water as the sole solvent for dissolution, eliminating the need for additional solvents. The synthesized materials underwent comprehensive characterization employing various analytical techniques, including X-ray diffraction, scanning electron microscopy, UV–visible spectrophotometry, and Fourier Transform Infrared Spectrometry. The photocatalytic activity of MnWO4 nanoparticles for degrading the organic contaminant methylene blue in water was also investigated under visible light irradiation. Notably, a significant degradation of methylene blue was observed, with 98% degradation achieved within a 120-min irradiation period. Additionally, the material was subjected to electrochemical studies to assess its sensing capabilities and exhibited strong sensing activity by detecting nano-molar concentrations of nitrite solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available in the supplementary material of this article.

References

  1. H.N. Deepakumari, V.L. Ranganatha, G. Nagaraju, R. Prakruthi, C. Mallikarjunaswamy, Facile green synthesis of zirconium phosphate nanoparticles using Aegle marmelos: antimicrobial and photodegradation studies. Mater. Today Proc. 62, 5169–5173 (2022)

    Article  CAS  Google Scholar 

  2. C. Mallikarjunaswamy, P. Parameswara, S. Pramila, G. Nagaraju, H.N. Deepakumari, Green and facile synthesis of zinc oxide nanoparticles for enhanced photocatalytic organic pollutant degradation. J. Mater. Sci. (2022). https://doi.org/10.1007/s10854-022-08852-z

    Article  Google Scholar 

  3. V.L. Ranganatha, S. Pramila, G. Nagaraju, B.S. Surendra, C. Mallikarjunaswamy, Cost-effective and green approach for the synthesis of zinc ferrite nanoparticles using Aegle marmelos extract as a fuel: catalytic, electrochemical, and microbial applications. J. Mater. Sci. 31, 1–18 (2020)

    Google Scholar 

  4. D.S. Kudlur, A.M. Meghashree, S.A. Vinutha, K.C. Sunil, G. Karthik, P.A. Venkatesh, Materials today: proceedings one pot synthesis of CuO-NiO nanoparticles using Aegle marmelos fruit extract and their antimicrobial activity. Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.03.256

    Article  Google Scholar 

  5. C. Mallikarjunaswamy, J.S. Vidya, H.N. Deepakumari, G. Nagaraju, M.A. Sangamesha, Materials today: proceedings larvicidal and antimicrobial activity of zinc oxide nanoparticles synthesized from rain tree pod aqueous extract. Mater. Today Proc. 62, 5083–5086 (2022). https://doi.org/10.1016/j.matpr.2022.02.422

    Article  CAS  Google Scholar 

  6. V.L. Ranganatha, G. Nagaraju, J.S. Vidya, H.N. Deepakumari, D.M. Gurudutt, Materials today: proceedings Indian bael mediated eco-friendly synthesis and performance evaluation of zirconium oxide nanoparticles: an efficient anti-microbial agent. Mater. Today Proc. 62, 5067–5070 (2022). https://doi.org/10.1016/j.matpr.2022.02.407

    Article  CAS  Google Scholar 

  7. C. Mallikarjunaswamy, S. Pramila, G. Nagaraju, V. L. Ranganatha, Enhanced photocatalytic, electrochemical and antimicrobial activities of α-Mn2V2O7 nanopebbles. J. Mater. Sci. 33, 617–634 (2022).

    Article  CAS  Google Scholar 

  8. B.S. Surendra, M.M. Swamy, T. Shamala, S. Rao, A.S. Sowmy, C. Mallikarjuna, S. Pramila, Development of enhanced electrochemical sensor and antimicrobial studies of ZnO NPs synthesized using green plant extract. Sens. Int. 3, 100176 (2022). https://doi.org/10.1016/j.sintl.2022.100176

    Article  Google Scholar 

  9. C.M.V. Lakshmi, R. Ramith, R. Udayabhanu, Facile microwave—assisted green synthesis of ZnO nanoparticles: application to photodegradation, antibacterial and antioxidant. J. Mater. Sci. 31, 1004–1021 (2020). https://doi.org/10.1007/s10854-019-02612-2

    Article  CAS  Google Scholar 

  10. D. Malwal, G. Packirisamy, Recent advances in the synthesis of metal oxide (MO) nanostructures. Elsevier Ltd. (2018). https://doi.org/10.1016/B978-0-08-101975-7.00010-5

    Article  Google Scholar 

  11. P. Velusamy, R.R. Babu, K. Ramamurthi, E. Elangovan, J. Viegas, Effect of La doping on the structural, optical and electrical properties of spray pyrolytically deposited CdO thin fi lms. J. Alloys Compd. 708, 804–812 (2017). https://doi.org/10.1016/j.jallcom.2017.03.032

    Article  CAS  Google Scholar 

  12. C. Mallikarjunaswamy, S. Pramila, G. Nagaraju, R. Ramu, V.L. Ranganatha, Green synthesis and evaluation of antiangiogenic, photocatalytic, and electrochemical activities of BiVO4 nanoparticles. J. Mater. Sci. 32, 1–19 (2021)

    Google Scholar 

  13. P. Velusamy, S. Liu, R. Xing, M. Sathiya, A. Ahmad, M.D. Albaqami, R. Ghazi, E. Elamurugu, M.S. Pandian, P. Ramasamy, ScienceDirect Enhanced photo-electrocatalytic performance of the nano heterostructures based on Pr3 þ modified. Int. J. Hydrogen Energy 47, 32903–32920 (2022). https://doi.org/10.1016/j.ijhydene.2022.07.177

    Article  CAS  Google Scholar 

  14. P. Velusamy, X. Liu, M. Sathiya, N.S. Alsaiari, F.M. Alzahrani, M.T. Nazir, E. Elamurugu, M.S. Pandian, F. Zhang, Investigate the suitability of g-C3N4 nanosheets ornamented with BiOI nanoflowers for photocatalytic dye degradation and PEC water splitting. Chemosphere 321, 138007 (2023)

    Article  CAS  Google Scholar 

  15. C. Mallikarjunaswamy, S. Pramila, G.S. Shivaganga, H.N. Deepakumari, R. Prakruthi, G. Nagaraju, P. Parameswara, V. L. Ranganatha. Facile synthesis of multifunctional bismuth oxychloride nanoparticles for photocatalysis and antimicrobial test. Mater. Sci. Eng. B 290, 116323 (2023). https://doi.org/10.1016/j.mseb.2023.116323.

  16. V.A. Online, R. Ramesh, RSC Adv. (2015). https://doi.org/10.1039/C5RA15262C

    Article  Google Scholar 

  17. H.N. Cuong, S. Pansambal, S. Ghotekar, R. Oza, N.T.T. Hai, N.M. Viet, V.-H. Nguyen, New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: a review. Environ. Res. 203, 111858 (2022)

    Article  CAS  Google Scholar 

  18. S. Pramila, V.L. Ranganatha, G. Nagaraju, C. Mallikarjunaswamy, Microwave and combustion methods: a comparative study of synthesis, characterization, and applications of NiO nanoparticles. Inorg. Nano-Metal Chem. (2022). https://doi.org/10.1080/24701556.2022.2081188

    Article  Google Scholar 

  19. S. Pramila, V.L. Ranganatha, G. Nagaraju, C. Mallikarjunaswamy, Green synthesis of bismuth tungstate nanoparticles, evaluation of their applications favouring photocatalytic and bio-sensing. Inorg. Nano-Metal Chem. (2022). https://doi.org/10.1080/24701556.2022.2081192

    Article  Google Scholar 

  20. M. Aravind, M. Amalanathan, S. Aslam, A.E. Noor, D. Jini, S. Majeed, P. Velusamy, A.A. Alothman, R.A. Alshgari, M.S.S. Mushab, Hydrothermally synthesized Ag-TiO2 nanofibers (NFs) for photocatalytic dye degradation and antibacterial activity. Chemosphere 321, 138077 (2023)

    Article  CAS  Google Scholar 

  21. S.A. Vinutha, A.M. Meghashree, D.M. Gurudutt, D.S. Kudlur, K.C.S. Kumar, G. Karthik, N.A. Kumar, V.L. Ranganatha, P. Parameswara, C. Mallikarjunaswamy, Materials today: proceedings Facile green synthesis of cerium oxide nanoparticles using Jacaranda mimosifolia leaf extract and evaluation of their antibacterial and photodegradation activity. Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.05.592

    Article  Google Scholar 

  22. R. Krishnan, S. N. Shibu, D. Poelman, A. K. Badyal, A. Kunti, H. C. Swart, S. G. Menon, Recent advances in microwave synthesis for photoluminescence and photocatalysis. Mater. Today Commun. 32, 103890 (2022).

    Article  CAS  Google Scholar 

  23. D.D. Mal, D. Pradhan, Room temperature acid-free greener synthesis of imine using cobalt-doped manganese tungstate. Inorg. Chem. 61, 2211–2218 (2022)

    Article  CAS  Google Scholar 

  24. H. Eranjaneya, G.T. Chandrappa, Solution combustion synthesis of nano ZnWO4 photocatalyst. Trans. Indian Ceram. Soc. 75, 133–137 (2016)

    Article  CAS  Google Scholar 

  25. Q. Zou, R. Tang, H. Zhao, J. Jiang, J. Li, Y. Fu, Hyaluronic-acid-assisted facile synthesis of MnWO4 single-nanoparticle for efficient trimodal imaging and liver–renal structure display. ACS Appl. Nano Mater. 1, 101–110 (2017)

    Article  Google Scholar 

  26. M. Rahimi-Nasrabadi, M. Eghbali-Arani, The effect of sugars on the morphology of MnWO4 nanoparticles, and evaluating the product as photocatalysts. J. Mater. Sci. 28, 15239–15245 (2017)

    CAS  Google Scholar 

  27. F. Li, X. Xu, J. Huo, W. Wang, A simple synthesis of MnWO4 nanoparticles as a novel energy storage material. Mater. Chem. Phys. 167, 22–27 (2015)

    Article  CAS  Google Scholar 

  28. H. Zhou, J. Ke, H. Wu, J. Liu, D. Xu, X. Zou, Manganese tungstate/graphitic carbon nitride S-scheme heterojunction for boosting hydrogen evolution and mechanism exploration. Mater. Today Energy 23, 100918 (2022)

    Article  CAS  Google Scholar 

  29. L.H. Hoang, N.T.M. Hien, W.S. Choi, Y.S. Lee, K. Taniguchi, T. Arima, S. Yoon, X.B. Chen, I. Yang, Temperature-dependent Raman scattering study of multiferroic MnWO4. J Raman Sepectrosc 4(2009), 1005–1010 (2010). https://doi.org/10.1002/jrs.2542

    Article  CAS  Google Scholar 

  30. Y. Wang, L. Yang, Y. Wang, X. Wang, G. Han, Shape-controlled synthesis of MnWO4 nanocrystals by a surfactant-free hydrothermal method. Ceram. Int. 40, 5085–5090 (2014). https://doi.org/10.1016/j.ceramint.2013.09.117

    Article  CAS  Google Scholar 

  31. G. Harichandran, P. Divya, S. Radha, J. Yesuraj, Facile and controllable CTAB-assisted sonochemical synthesis of one-dimensional MnWO4 nanorods for supercapacitor application. J. Mol. Struct. 1199, 126931 (2020). https://doi.org/10.1016/j.molstruc.2019.126931

    Article  CAS  Google Scholar 

  32. M. Khaksar, D.M. Boghaei, M. Amini, Synthesis, structural characterization and reactivity of manganese tungstate nanoparticles in the oxidative degradation of methylene blue. C. R. Chim. 18, 199–203 (2015). https://doi.org/10.1016/j.crci.2014.04.004

    Article  CAS  Google Scholar 

  33. P. Van Hanh, L. H. Hoang, P. Van Hai, N. Van Minh, X.B. Chen, I.S. Yang, Crystal quality and optical property of MnWO4 nanoparticles synthesized by microwave-assisted method. J. Phys. Chem. Solids. 74, 426–430 (2013)

    Article  Google Scholar 

  34. L. Yang, Y. Wang, Y. Wang, X. Wang, L. Wang, G. Han, Shape-controlled synthesis of MnWO4 nanocrystals via a simple hydrothermal method. J. Alloys Compd. 578, 215–219 (2013). https://doi.org/10.1016/j.jallcom.2013.05.133

    Article  CAS  Google Scholar 

  35. H. Eranjaneya, P.S. Adarakatti, A. Siddaramanna, P. Malingappa, G.T. Chandrappa, Citric acid assisted synthesis of manganese tungstate nanoparticles for simultaneous electrochemical sensing of heavy metal ions. Mater. Sci. Semicond. Process. 86, 85–92 (2018). https://doi.org/10.1016/j.mssp.2018.06.020

    Article  CAS  Google Scholar 

  36. W.B. Hu, X.L. Nie, Y.Z. Mi, Controlled synthesis and structure characterization of nanostructured MnWO4. Mater. Charact. 61, 85–89 (2010). https://doi.org/10.1016/j.matchar.2009.10.009

    Article  CAS  Google Scholar 

  37. W. Qu, W. Wlodarski, J.U. Meyer, Comparative study on micromorphology and humidity sensitive properties of thin-film and thick-film humidity sensors based on semiconducting MnWO4. Sens. Actuators B 64, 76–82 (2000). https://doi.org/10.1016/S0925-4005(99)00487-6

    Article  CAS  Google Scholar 

  38. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M. Khalilian-Shalamzari, S.S. Hajimirsadeghi, M.M. Zahedi, Optimization of synthesis procedure and structure characterization of manganese tungstate nanoplates. Cent. Eur. J. Chem. 11, 1393–1401 (2013). https://doi.org/10.2478/s11532-013-0271-y

    Article  CAS  Google Scholar 

  39. S. Zinatloo-Ajabshir, M. Baladi, M. Salavati-Niasari, Sono-synthesis of MnWO4 ceramic nanomaterials as highly efficient photocatalysts for the decomposition of toxic pollutants. Ceram. Int. 47, 30178–30187 (2021). https://doi.org/10.1016/j.ceramint.2021.07.197

    Article  CAS  Google Scholar 

  40. S. Saranya, R.K. Selvan, N. Priyadharsini, Synthesis and characterization of polyaniline/MnWO4 nanocomposites as electrodes for pseudocapacitors. Appl. Surf. Sci. 258, 4881–4887 (2012). https://doi.org/10.1016/j.apsusc.2012.01.104

    Article  CAS  Google Scholar 

  41. S. Saranya, S.T. Senthilkumar, K.V. Sankar, R.K. Selvan, Synthesis of MnWO4 nanorods and its electrical and electrochemical properties. J. Electroceram. 28, 220–225 (2012). https://doi.org/10.1007/s10832-012-9714-7

    Article  CAS  Google Scholar 

  42. S. Muthamizh, R. Suresh, K. Giribabu, R. Manigandan, S.P. Kumar, S. Munusamy, V. Narayanan, MnWO4 nanocapsules: synthesis, characterization and its electrochemical sensing property. J. Alloys Compd. 619, 601–609 (2015). https://doi.org/10.1016/j.jallcom.2014.09.049

    Article  CAS  Google Scholar 

  43. C.P. Devatha, A.K. Thalla, Green synthesis of nanomaterials. In: Synthesis of Inorganic Nanomaterials (pp. 169–184). Elsevier, New York (2018).

  44. G. Karkera, T. Sarkar, M.D. Bharadwaj, A.S. Prakash, Design and development of efficient bifunctional catalysts by tuning the electronic properties of cobalt–manganese tungstate for oxygen reduction and evolution reactions. ChemCatChem 9, 3681–3690 (2017)

    Article  CAS  Google Scholar 

  45. N.D. Cuong, K.Q. Trung, T.-D. Nguyen, N. Van Toan, C.M. Hung, N. Van Hieu, Controlled synthesis of manganese tungstate nanorods for highly selective NH3 gas sensor. J. Alloys Compd. 735, 787–794 (2018)

    Article  Google Scholar 

  46. T.L. Soundarya, R. Harini, K. Manjunath, ScienceDirect Pt-doped TiO2 nanotubes as photocatalysts and electrocatalysts for enhanced photocatalytic H2 generation, electrochemical sensing, and supercapacitor applications. Int. J. Hydrogen Energy. (2023). https://doi.org/10.1016/j.ijhydene.2023.04.289

    Article  Google Scholar 

  47. T.L. Soundarya, B. Nirmala, F.A. Alharthi, B. Nagaraj, G. Nagaraju, HRSL supported fabrication of LiZnVO4 nanoparticles: applications to photoluminescence, dye elimination and biosensing Materials Science & Engineering B HRSL supported fabrication of LiZnVO4 nanoparticles: applications to photoluminescence, dye Elim. Mater. Sci. Eng. B 280, 115718 (2022). https://doi.org/10.1016/j.mseb.2022.115718

    Article  CAS  Google Scholar 

  48. T.L. Soundarya, Y.T. Ravikiran, B. Nirmala, G. Nagaraju, Green synthesis of LiZnVO4 nanoparticles and its multiple applications towards electrochemical sensor, supercapacitor, humidity sensing, photoluminescence and antioxidant activities. J. Mater. Sci. (2022). https://doi.org/10.1007/s10854-022-08070-7

    Article  Google Scholar 

  49. X. Lin, J. Xing, W. Wang, Z. Shan, F. Xu, F. Huang, Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: a strategy for the design of efficient combined photocatalysts. J. Phys. Chem. C 111, 18288–18293 (2007)

    Article  CAS  Google Scholar 

  50. P. Van Hanh, L.H. Hoang, P. Van Hai, N. Van Minh, X.-B. Chen, I.-S. Yang, Crystal quality and optical property of MnWO4 nanoparticles synthesized by microwave-assisted method. J. Phys. Chem. Solids. 74, 426–430 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Center for Research and Development (NIE-CRD), The National Institute of Engineering, Mysuru. Also, the JSS College of Arts, Commerce and Science, Ooty Road, Mysuru for laboratory facility.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

GSS: Data curation, writing—original draft, PP and GN: writing—review and editing. CM: software, validation, LS: investigation, RVL, SP, KCSK: visualization, supervision.

Corresponding authors

Correspondence to P. Parameswara or C. Mallikarjunaswamy.

Ethics declarations

Conflict of interest

Authors do not have any conflict of interest with respect to this paper.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivaganga, G.S., Parameswara, P., Mallikarjunaswamy, C. et al. Green, nonchemical route for the synthesis of MnWO4 nanostructures, evaluation of their photocatalytic and electrochemical performance. J Mater Sci: Mater Electron 34, 1791 (2023). https://doi.org/10.1007/s10854-023-11190-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11190-3

Navigation