Skip to main content
Log in

Synthesis and characterizations of (Ba2Zn2Fe12O22)1-x(CoFe2O4)x ferrites composite for the high frequency applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work aims to provide a detailed account of structural, morphological, magnetic, and dielectric characteristics of Ba2Zn2Fe12O22 (Zn2Y) and CoFe2O4 (CoF) ferrites composite. The composites; (Zn2Y)1-x(CoF)x (x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) were prepared by coprecipitation method. All compositions were sintered at 1200 °C for 4 h. X-ray diffraction (XRD) analysis showed the occurrence of two distinct ferrite phases in all composites. The composition with x = 0.2 showed maximum bulk density among all composites. The microstructure of different composites, evaluated by FESEM analysis, was almost similar, where plate like hexaferrite and cubic spinel ferrite phases were present. The saturation magnetization (Ms), coercivity (Hc) and remanence magnetization (Mr) of the composite were increased with the increase in CoF ferrite content. Among all composite, the composition with x = 0.2 showed maximum permeability (µ ~ 18) and permittivity (ε ~ 34) at 100 MHz because of its high bulk density. All composites showed a stable permeability upto 300 MHz. Dielectric and magnetic losses were low up to about 500 MHz. The composition with x = 0.80 showed an equivalent µ and ε, good miniaturization factor (n ~ 14) and characteristic impedance (Zi ~ 1). The magneto-dielectric characteristics of composites imply that they can be used in high-frequency microwave antenna applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. R.C. Pullar, Prog. Mater Sci. 57, 1191–1334 (2012)

    Article  CAS  Google Scholar 

  2. J. Smith, H. Wijn, Eindhoven, Phillips Technical Library (1959).

  3. V.G. Harris, IEEE Trans. Magn. 48, 1075–1104 (2011)

    Article  Google Scholar 

  4. H. Mosallaei, K. Sarabandi, IEEE Trans. Antennas Propag. 52, 2403–2414 (2004)

    Article  Google Scholar 

  5. Z. Zheng, H. Zhang, J.Q. Xiao, F. Bai, IEEE Trans. Magn. 49, 4214–4217 (2013)

    Article  CAS  Google Scholar 

  6. Z. Zheng, Q. Feng, Q. Xiang, Z. Di, V.G. Harris, J. Appl. Phys. 121, 063901 (2017)

    Article  Google Scholar 

  7. W. Zhang, Y. Bai, X. Han, L. Wang, X. Lu, L. Qiao, J. Cao, D. Guo, Mater. Res. Bull. 48, 3850–3853 (2013)

    Article  CAS  Google Scholar 

  8. Q. Xia, H. Su, T. Zhang, J. Li, G. Shen, H. Zhang, X. Tang, J. Appl. Phys. 112, 043915 (2012)

    Article  Google Scholar 

  9. Y. Peng, X. Wu, Z. Chen, W. Liu, F. Wang, X. Wang, Z. Feng, Y. Chen, V.G. Harris, J. Alloy. Compd. 630, 48–53 (2015)

    Article  CAS  Google Scholar 

  10. M. Almessiere, Y. Slimani, A. Trukhanov, A. Sadaqat, A.D. Korkmaz, N. Algarou, H. Aydın, A. Baykal, M.S. Toprak, Nano-Struct. Nano-Objects 26, 100728 (2021)

    Article  CAS  Google Scholar 

  11. A. Trukhanov, V. Kostishyn, L. Panina, V. Korovushkin, V. Turchenko, P. Thakur, A. Thakur, Y. Yang, D. Vinnik, E. Yakovenko, J. Alloy. Compd. 754, 247–256 (2018)

    Article  CAS  Google Scholar 

  12. A. Trukhanov, K. Astapovich, M. Almessiere, V. Turchenko, E. Trukhanova, V. Korovushkin, A. Amirov, M. Darwish, D. Karpinsky, D. Vinnik, J. Alloy. Compd. 822, 153575 (2020)

    Article  CAS  Google Scholar 

  13. S. Trukhanov, A. Trukhanov, V. Kostishyn, L. Panina, A.V. Trukhanov, V. Turchenko, D. Tishkevich, E. Trukhanova, O. Yakovenko, L.Y. Matzui, Dalton Trans. 46, 9010–9021 (2017)

    Article  CAS  Google Scholar 

  14. Y. Chang, C. Wang, T. Chin, F. Yen, J. Magn. Magn. Mater. 72, 343–348 (1988)

    Article  CAS  Google Scholar 

  15. D. Vinnik, D. Sherstyuk, V. Zhivulin, D. Zhivulin, A.Y. Starikov, S. Gudkova, D. Zherebtsov, D. Pankratov, Y.A. Alekhina, N. Perov, Ceram. Int. 48, 18124–18133 (2022)

    Article  CAS  Google Scholar 

  16. D. Rathore, R. Kurchania, R. Pandey, Int. J. Miner. Metall. Mater. 21, 408–414 (2014)

    Article  CAS  Google Scholar 

  17. A. Trukhanov, N. Algarou, Y. Slimani, M. Almessiere, A. Baykal, D. Tishkevich, D. Vinnik, M. Vakhitov, D. Klygach, M. Silibin, RSC Adv. 10, 32638–32651 (2020)

    Article  CAS  Google Scholar 

  18. M. Almessiere, Y. Slimani, N. Algarou, M. Gondal, Y. Wudil, M. Younas, I. Auwal, A. Baykal, A. Manikandan, T. Zubar, Ceram. Int. 47, 35209–35223 (2021)

    Article  CAS  Google Scholar 

  19. A. Aslam, M. Islam, I. Ali, M. Awan, M. Irfan, A. Iftikhar, Ceram. Int. 40, 155–162 (2014)

    Article  CAS  Google Scholar 

  20. H. Mahmood, T. Kausor, S. Liaqat, M. Taj, M. Malana, M. Mahmood, M. Yousuf, S. Jabeen, I. Khawaja, Digest J. Nanomater. Biostruct. 14, 711–720 (2019)

    Google Scholar 

  21. M. Chandel, V.P. Singh, R. Jasrotia, K. Singha, R. Kumar, AIMS Mater. Sci. 7, 244–268 (2020)

    Article  CAS  Google Scholar 

  22. S. Hazra, M.K. Patra, S.R. Vadera, N.N. Ghosh, J. Am. Ceram. Soc. 95, 60–63 (2012)

    Article  CAS  Google Scholar 

  23. Y. Slimani, N.A. Algarou, M.A. Almessiere, A. Sadaqat, M.G. Vakhitov, D.S. Klygach, D.I. Tishkevich, A.V. Trukhanov, S. Guner, A.S. Hakeem, I.A. Auwal, A. Baykal, A. Manikandan, I. Ercan, Arab. J. Chem. 14, 102992 (2021)

    Article  CAS  Google Scholar 

  24. R. Vinaykumar, S. Prakash, P. Roy, J. Bera, J. Mater. Sci.: Mater. Electron. 32, 7330–7339 (2021)

    CAS  Google Scholar 

  25. T. George, A. Sunny, T. Varghese, in: IOP conference series: materials science and engineering (IOP Publishing, 2015), p. 012050

  26. Y. Bai, J. Zhou, Z. Gui, Z. Yue, L. Li, J. Magn. Magn. Mater. 264, 44–49 (2003)

    Article  CAS  Google Scholar 

  27. Z. Zheng, H. Zhang, J.Q. Xiao, Q. Yang, L. Jia, J. Phys. D Appl. Phys. 47, 115001 (2014)

    Article  Google Scholar 

Download references

Funding

This work was financially supported by National Institute of Technology, Rourkela, India.

Author information

Authors and Affiliations

Authors

Contributions

[AK]: Sample preparation, experiment, data collection, interpretation of the results, and writing of the manuscript. [KP]: Experiment, data collection, formal analysis, and writing of the manuscript. [SSH]: Experiment, and data collection. [JB]: Conceptualization, supervision, interpretation of results, reviewing and editing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Japes Bera.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Polley, K., Hiremath, S.S. et al. Synthesis and characterizations of (Ba2Zn2Fe12O22)1-x(CoFe2O4)x ferrites composite for the high frequency applications. J Mater Sci: Mater Electron 34, 1710 (2023). https://doi.org/10.1007/s10854-023-11117-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11117-y

Navigation