Skip to main content
Log in

Optoelectronic properties of a new luminescent-synthesized organic material based on carbazole and thiophene rings for a new generation of OLEDs devices: experimental investigations and DFT modeling

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new deep blue-emitting organic small molecule based on carbazole and thiophene rings was chemically synthesized using a Wittig reaction. The obtained material named carbazole–thiophene and denoted Cbz(–π–Th)2 was synthesized with a yield of 89%. The chemical structure of the Cbz(–π–Th)2 molecule was first confirmed experimentally by nuclear magnetic resonance (1H and 13C) and infrared spectroscopies. The photophysical properties of the synthesized molecule were studied by optical absorption and steady-state photoluminescence spectroscopies in a diluted solution state. The obtained material absorbs essentially in the ultraviolet part and the optical band gap \(\left( {E_{{\text{g}}}^{{{\text{opt}}}} } \right)\) was estimated to be at around 2.95 eV. By varying the excitation wavelength in the UV part, a broad blue emission is obtained with a high photoluminescence quantum yield (PLQY) of ~ 0.34 in solution. In addition, the International Commission on Illumination (CIE) coordinates obtained from the fluorescence results show that the Cbz(–π–Th)2 molecule exhibits a deep blue emission with CIE coordinates at around (0.18, 0.05) (CIEy < 0.1). Else, Density Functional Theory (DFT) and it is extended Time-dependent DFT methodologies were performed to evaluate the ground and the excited state of the examined molecule. Theoretical investigation confirms first the chemical structure and allows the investigation of the structural and electronic properties of the synthesized Cbz(–π–Th)2 molecule. In the second step, the chemical structure of the synthesized material was used as a photoactive layer in a multilayer structure forming a new generation of a simulated organic light-emitting diode. DFT results show that insertion of carbon based-molecule, especially a graphene monolayer, permits to reduce the energy of the electron injection barrier (ΔEe) from the used cathode to the Cbz(–π–Th)2 active layer, which permits to enhance the performance of the designed organic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. T.Y.L. Liu, Z. Xie, Y. Ma, Sci. China Chem. (2015). https://doi.org/10.1007/s11426-015-5409-7

    Article  Google Scholar 

  2. G. Xia, C. Qu, Y. Zhu, J. Ye, K. Ye, Z. Zhang, Y. Wang, Angew. Chem.  (2021). https://doi.org/10.1002/anie.202100423

    Article  Google Scholar 

  3. X. Cao, D. Zhang, S. Zhang, Y. Tao, W. Huang, J. Mater. Chem. C (2017). https://doi.org/10.1039/c7tc02481a

    Article  Google Scholar 

  4. D. Corre Santos, M.F. de Vieira Marques, J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-08333-3

    Article  Google Scholar 

  5. M. Yıldırım, A. Erdoğan, Ã.F. Yüksel, M. Kuş, M. Can, Ã. Akın, N. Tuğluoğlu, J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01382-1

    Article  Google Scholar 

  6. C. Xue, H. Lin, G. Zhang, Y. Hu, W. Jiang, J. Lang, D. Wang, G. Xing, J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03060-z

    Article  Google Scholar 

  7. G.M. Farinol, R. Ragni, Chem. Soc. Rev. (2011). https://doi.org/10.1039/C0CS00204F

    Article  Google Scholar 

  8. Y. Li, J.Y. Liu, Y.D. Zhao, Y.C. Cao, Mater. Today (2017). https://doi.org/10.1016/j.mattod.2016.12.003

    Article  Google Scholar 

  9. G. Hong, X. Gan, C. Leonhardt, Z. Zhang, J. Seibert, J.M. Busch, S. Bräse, Adv. Mater. (2021). https://doi.org/10.1002/adma.202005630

    Article  Google Scholar 

  10. V.G. Sree, C. Bathula, H.K. Youi, H.S. Kim, J.I. Sohn, H. Im, J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2021.116708

    Article  Google Scholar 

  11. X. Cai, S.J. Su, Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201802558

    Article  Google Scholar 

  12. C.L. Ho, W.Y. Wong, New. J. Chem. (2013). https://doi.org/10.1039/C3NJ00170A

    Article  Google Scholar 

  13. J. Li, R. Liu, Z. Zhao, Z. Zhou, J. Mater. Sci. Mater. Electron. (2014). https://doi.org/10.1007/s10854-014-1831-4

    Article  Google Scholar 

  14. B. Wex, B.R. Kaafarani, J. Mater. Chem. C (2017). https://doi.org/10.1039/C7TC02156A

    Article  Google Scholar 

  15. T. Lu, J. You, D. Zhao, H. Wang, Y. Miao, X. Liu, Y. Xiao, X. Li, S. Wang, J. Mater. Sci. Mater. Electron. (2015). https://doi.org/10.1007/s10854-015-3254-2

    Article  Google Scholar 

  16. M. Reig, C. Gozlvez, R. Bujaldon, G. Bagdziunas, K. Ivaniuk, N. Kostiv, D. Volyniuk, J.V. Grazulevicius, D. Velasco, Dye Pigments (2017). https://doi.org/10.1016/j.dyepig.2016.09.062

    Article  Google Scholar 

  17. N. Agarwal, P.K. Nayak, F. Ali, M.P. Patankarb, K.L. Narasimhan, N. Periasamy, Synth. Met. (2011). https://doi.org/10.1016/j.synthmet.2011.01.001

    Article  Google Scholar 

  18. P. Wang, S. Fan, J. Liang, L. Ying, J. You, S. Wang, X. Li, Dye Pigments (2017). https://doi.org/10.1016/j.dyepig.2017.03.036

    Article  Google Scholar 

  19. L.A. Lozano-Hernández, J.L. Maldonado, C. Garcias-Morales, A. Espinosa Roa, O. Barbosa-García, M. Rodríguez, E. Pérez-Gutiérrez, J. Mol. (2018). https://doi.org/10.3390/molecules23020280

    Article  Google Scholar 

  20. A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38(6), 3098–3100 (1988)

    Article  CAS  Google Scholar 

  21. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, H. Nakatsuji et al., Gaussian09 revision D.01 (Gaussian Inc, Wallingford, 2009)

    Google Scholar 

  22. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1998)

    Article  Google Scholar 

  23. A.D. Becke, J. Chem. Phys. 104, 1040 (1996)

    Article  CAS  Google Scholar 

  24. R. Dennington, T. Keith J. Millam, (2009) GaussView, Version 5, Semichem Inc, Shawnee mission KS 

  25. M.P. Andersson, P. Uvdal, J. Phys. Chem. A  (2005). https://doi.org/10.1021/jp045733a

    Article  Google Scholar 

  26. Y. Ben Salah, A.S. Altowyan, M. Mbarek, K. Alimi, Polymers (2021). https://doi.org/10.3390/polym13111805

    Article  Google Scholar 

  27. M. Mbarek, M.M. Almoneef, Y. ben Saleh, K. Alimi,  Spectrochim. Acta Part A Mol. Biomol. Spectrosc. (2021). https://doi.org/10.1016/j.saa.2021.119509

    Article  Google Scholar 

  28. J.L. Sauvajol, C. Chorro, J.P. Lère-Porte, R.J. Corriu, J.J. Moreau, P. Thépot, M.W.C. Man,  Synth. Metals (1994). https://doi.org/10.1016/0379-6779(94)90211-9

    Article  Google Scholar 

  29. D.F. Machado, T.O. Lopes, I.T. Lima, D.A. Silva Filho, H.C. de Oliveira, J. Phys. Chem. C (2016). https://doi.org/10.1021/acs.jpcc.6b01567

    Article  Google Scholar 

  30. N. Bouzayen, H. Sadki, M. Mbarek, M. Bouachrine, M.N. Bennani, J. Wéry, K. Alimi, Polym. Test. (2018). https://doi.org/10.1016/j.polymertesting.2017.12.023

    Article  Google Scholar 

  31. M. Chemek, S.B. Amor, W. Taouali, E. Faulques, M. Bourass, D. Khlaifia, A.H. Said, K. Alimi, J. Mol. Struct. Vol. (2021). https://doi.org/10.1016/j.molstruc.2021.130599

    Article  Google Scholar 

  32. M. Mbarek, M.M. Almoneef, K. Alimi, J. Mol. Struct. (2020). https://doi.org/10.1016/j.molstruc.2020.128384

    Article  Google Scholar 

  33. A. Iraqi, I. Wataru, J. Chem. Mater. (2004). https://doi.org/10.1021/cm031078s

    Article  Google Scholar 

  34. N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, J. Comput. Chem. 29, 839–845 (2008). https://doi.org/10.1002/jcc.20823

    Article  CAS  Google Scholar 

  35. M. Chemek, D. Khlaifia, F. Massuyeau, J.L. Duvail, E. Faulques, J. Wéry, K. Alimi, Synth. Metals (2014). https://doi.org/10.1016/j.synthmet.2014.09.004

    Article  Google Scholar 

  36. M. Chemek, J. Wéry, M. Bouachrine, M. Paris, S. Lefrant, K. Alimi, Synth. Met. (2010). https://doi.org/10.1016/j.synthmet.2010.09.001

    Article  Google Scholar 

  37. O.F. Yüksel, M. Kuş, M. Yıldırım, J. Electron. Mater. (2016). https://doi.org/10.1007/s11664-016-4999-y

    Article  Google Scholar 

  38. H. Sasabe, J. Kido, J. Mater. Chem. C (2013). https://doi.org/10.1039/C2TC00584K

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge King Abdulaziz University’s High-Performance Computing Center (Aziz Supercomputer) for supporting the computational DFT calculation done in this work. The authors are grateful to Pr Chtourou Radhouane for the authorization access to the experimental analysis done in Technopark Borj Cedria (CRTEn), Tunisia.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the present work. Material preparation and experimental analysis were performed by CM, MB, AM, OH, and KA. Theoretical analysis was performed by CM, AM, and NW. The first draft of the manuscript was written by CM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alimi Kamel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chemek, M., Braiek, M.B., Mabrouk, A. et al. Optoelectronic properties of a new luminescent-synthesized organic material based on carbazole and thiophene rings for a new generation of OLEDs devices: experimental investigations and DFT modeling. J Mater Sci: Mater Electron 34, 1706 (2023). https://doi.org/10.1007/s10854-023-11068-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11068-4

Navigation