Skip to main content
Log in

Progress in small-molecule luminescent materials for organic light-emitting diodes

  • Mini Reviews
  • Special Topic Advances in Organic Optoelectronic Molecules & Materials
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Organic light-emitting diodes (OLEDs) have been extensively studied since the first efficient device based on small molecular luminescent materials was reported by Tang. Organic electroluminescent material, one of the centerpieces of OLEDs, has been the focus of studies by many material scientists. To obtain high luminosity and to keep material costs low, a few remarkable design concepts have been developed. Aggregation-induced emission (AIE) materials were invented to overcome the common fluorescence-quenching problem, and cross-dipole stacking of fluorescent molecules was shown to be an effective method to get high solid-state luminescence. To exceed the limit of internal quantum efficiency of conventional fluorescent materials, phosphorescent materials were successfully applied in highly efficient electroluminescent devices. Most recently, delayed fluorescent materials via reverse-intersystem crossing (RISC) from triplet to singlet and the “hot exciton” materials based on hybridized local and charge-transfer (HLCT) states were developed to be a new generation of low-cost luminescent materials as efficient as phosphorescent materials. In terms of the device-fabrication process, solution-processible small molecular luminescent materials possess the advantages of high purity (vs. polymers) and low procession cost (vs. vacuum deposition), which are garnering them increasing attention. Herein, we review the progress of the development of small-molecule luminescent materials with different design concepts and features, and also briefly examine future development tendencies of luminescent materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pope M, Kallmann HP, Magnante P. Electroluminescence in organic crystals. J Chem Phys, 1963, 38: 2042–2043

    CAS  Google Scholar 

  2. Tang CW, Van Slyke SA. Organic electroluminescent diodes. Appl Phys Lett, 1987, 51: 913–915

    CAS  Google Scholar 

  3. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB. Light-emitting diodes based on conjugated polymers. Nature, 1990, 347: 539–541

    Article  CAS  Google Scholar 

  4. Li D, Zhang HY, Wang Y. Four-coordinate organoboron compounds for organic light-emitting diodes (OLEDs). Chem Soc Rev, 2013, 42: 8416–8433

    CAS  Google Scholar 

  5. Geffroy B, Roy PL, Prat C. Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym Int, 2006, 55: 572–582

    CAS  Google Scholar 

  6. Tsutsui T. Progress in electroluminescent devices using molecular thin films. Mrs Bulletin, 1997: 39–45

    Google Scholar 

  7. Chen HY, Lam WY, Luo JD, Ho YL, Tang BZ, Zhu DB, Wong M, Kwok HS. Highly efficient organic light-emitting diodes with a silole-based compound. Appl Phys Lett, 1987, 81: 574–576

    Google Scholar 

  8. Ma YG, Zhang HY, Shen JC, Che CM. Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes. Synthetic Met, 1998, 94: 245–248

    CAS  Google Scholar 

  9. Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998, 395: 151–154

    CAS  Google Scholar 

  10. Chou PT, Chi Y. Osmium- and ruthenium-based phosphorescent materials: design, photophysics, and utilization in OLED fabrication. Eur J Inorg Chem, 2006, 17: 3319–3332

    Google Scholar 

  11. Xiang HF, Cheng JH, Ma XF, Zhou XG, Chruma JJ. Near-infrared phosphorescence: materials and applications. Chem Soc Rev, 2013, 42: 6128–6185

    CAS  Google Scholar 

  12. Choy CHW, Chan WK, Yuan YP. Recent advances in transition metal complexes and light-management engineering in organic optoelectronic devices. Adv Mater, 2014, 26: 5368–5399

    CAS  Google Scholar 

  13. Xu H, Chen RF, Sun Q, Lai WY, Su QQ, Huang W, Liu XG. Recent progress in metal-organic complexes for optoelectronic applications. Chem Soc Rev, 2014, 43: 3259–3309

    CAS  Google Scholar 

  14. Uoyama H, Goushi K, Shizu K, Nomura Hiroko, Adachi C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 2012, 492: 234–238

    Article  CAS  Google Scholar 

  15. Chiang CJ, Kimyonok A, Etherington KM, Griffiths CG, Jankus V, Turksoy F, Monkman PA. Ultrahigh efficiency fluorescent single and bi-layer organic light emitting diodes: the key role of triplet fusion. Adv Funct Mater, 2013, 23: 739–746

    CAS  Google Scholar 

  16. Yang B, Ma YG. Progress in next-generation organic electroluminescent materials: material design beyond exciton statistics (in Chinese). Scientia Sinica Chimica, 2013, 43: 1457–1467

    Article  CAS  Google Scholar 

  17. Liu TH, Lou CY, Chen CH. Doped red organic electroluminescent devices based on a cohost emitter system. Appl Phys Lett, 2003, 83: 5241–5243

    CAS  Google Scholar 

  18. Hu RR, Leung NLC, Tang BZ. AIE macromolecules: syntheses, structures and functionalities. Chem Soc Rev, 2014, 43: 4494–4562

    CAS  Google Scholar 

  19. Mei J, Hong YN, Lam JWY, Qin AJ, Tang YH, Tang BZ. Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater, 2014, 26: 5429–5479

    CAS  Google Scholar 

  20. Xie ZQ, Yang B, Li F, Cheng G, Liu LL, Yang GD, Xu H, Ye L, Hanif M, Liu SY, Ma DG, Ma YG. Cross dipole stacking in the crystal of distyrylbenzene derivative: the approach toward high solid-state luminescence efficiency. J Am Chem Soc, 2005, 127: 14152–14153

    CAS  Google Scholar 

  21. He F, Xu H, Yang B, Duan Y, Tian LL, Huang KK, Ma YG, Liu SY, Feng SH, Shen JC. Oligomeric phenylenevinylene with cross dipole arrangement and amorphous morphology: enhanced solid-state luminescence efficiency and electroluminescence performance. Adv Mater, 2005, 17: 2710–2714

    CAS  Google Scholar 

  22. Zhu MR, Yang CL. Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes. Chem Soc Rev, 2013, 42: 4963–4976

    CAS  Google Scholar 

  23. Wu CH, Chien CH, Hsu FM, Shih PI, Shu CF. Efficient non-doped blue-light-emitting diodes incorporating an anthracene derivative end-capped with fluorene groups. J Mater Chem, 2009, 19: 1464–1470

    CAS  Google Scholar 

  24. Yuan Y, Chen JX, Lu F, Tong QX, Yang QD, Mo HW, Ng TW, Wong FL, Guo ZQ, Ye J, Chen Z, Zhang XH, Lee CS. Bipolar phenanthroimidazole derivatives containing bulky polyaromatic hydrocarbons for nondoped blue electroluminescence devices with high efficiency and low efficiency roll-off. Chem Mater, 2013, 25: 4957–4965

    CAS  Google Scholar 

  25. Yu YH, Huang CH, Yeh JM, Huang PT. Effect of methyl substituents on the N-diaryl rings of anthracene-9,10-diamine derivatives for OLEDs applications. Org Electron, 2011, 12: 694–702

    CAS  Google Scholar 

  26. Okumoto K, Kanno H, Hamada Y, Takahashi H, Shibata K. High efficiency red organic light-emitting devices using tetraphenyldibenzoperiflanthene-doped rubrene as an emitting layer. Appl Phys Lett, 2006, 89: 013502

    Google Scholar 

  27. Kim H, Byun Y, Das RR, Choi BK, Ahn PS. Small molecule based and solution processed highly efficient red electrophosphorescent organic light emitting devices. Appl Phys Lett, 2007, 91: 093512

    Google Scholar 

  28. Duan L, Hou LD, Lee TW, Qiao J, Zhang DQ, Dong GF, Wang LD, Qiu Y. Solution processable small molecules for organic light-emitting diodes. J Mater Chem, 2010, 20: 6392–6407

    CAS  Google Scholar 

  29. Zhong CM, Duan CH, Huang F, Wu HB, Cao Y. Materials and devices toward fully solution processable organic light-emitting diodes. Chem Mater, 2011, 23: 326–340

    CAS  Google Scholar 

  30. Wang L, Jiang Y, Luo J, Zhou Y, Zhou JH, Wang J, Pei J, Cao Y. Highly efficient and color-stable deep-blue organic light-emitting diodes based on a solution-processible dendrimer. Adv Mater, 2009, 21: 4854–4858

    CAS  Google Scholar 

  31. Liu C, Fu Q, Zou Y, Yang CL, Ma DG, Qin JG. Low turn-on voltage, high-power-efficiency, solution-processed deep-blue organic light-emitting diodes based on starburst oligofluorenes with diphenylamine end-capper to enhance the HOMO level. Chem Mater, 2014, 26: 3074–3083

    CAS  Google Scholar 

  32. Zhang M, Xue SF, Dong WY, Wang Q, Fei T, Gu C, Ma YG. Highly-efficient solution-processed OLEDs based on new bipolar emitters. Chem Commun, 2010, 46: 3923–3925

    CAS  Google Scholar 

  33. Li Y, Li BX, Tan WY, Liu Y, Zhu XH, Xie FY, Chen J, Ma DG, Peng JB, Cao Y, Roncali J. Structure-properties relationships in solution-processable single-material molecular emitters for efficient green organic light-emitting diodes. Org Electron, 2012, 13: 1092–1099

    CAS  Google Scholar 

  34. Khanasa T, Prachumrak N, Rattanawan R, Jungsuttiwong S, Keawin T, Taweesak S, Tuntulani T, Promarak V. An efficient solution processed non-doped red emitter based on carbazole-triphenylamine endcapped di(thiophen-2-yl)benzothiadiazole for pure red organic light-emitting diodes. Chem Commun, 2013, 49: 3401–3403

    CAS  Google Scholar 

  35. Li XC, Moratti SC, Wise DL, Trantolo D, Wnek GE. Electrical and Optical Polymer Systems: Foundations, Methods and Applications. Singapore: World Scientific, 1997

    Google Scholar 

  36. Fan C, Yang CL. Yellow/orange emissive heavy-metal complexes as phosphors in monochromatic and white organic light-emitting devices. Chem Soc Rev, 2014, 43: 6439–6469

    CAS  Google Scholar 

  37. Lee SH, Kim SO, Shin H, Yun HJ, Yang K, Kwon SK, Kim JJ, Kim YH. Deep-blue phosphorescence from perfluoro carbonyl-substituted Iridium complexes. J Am Chem Soc, 2013, 135: 14321–14328

    CAS  Google Scholar 

  38. Hang XC, Fleetham T, Turner E, Brooks J, Li J. Highly efficient blue-emitting cyclometalated platinum(II) complexes by judicious molecular design. Angew Chem Int Ed, 2013, 52: 6753–6756

    CAS  Google Scholar 

  39. Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR. Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl Phys Lett, 1999, 75: 4–6

    CAS  Google Scholar 

  40. Su SJ, Chiba T, Takeda T, Kido J. Pyridine-containing triphenylbenzene derivatives with high electron mobility for highly efficient phosphorescent OLEDs. Adv Mater, 2008, 20: 2125–2130

    CAS  Google Scholar 

  41. Rai VK, Nishiura M, Takimoto M, Hou ZM. Synthesis, structure and efficient electroluminescence of a heteroleptic dipyridylamido/bis(pyridylphenyl)iridium(III) complex. Chem Commun, 2011, 47: 5726–5728

    CAS  Google Scholar 

  42. Jou JH, Hsu MF, Wang WB, Chin CL, Chung YC, Chen CT, Shyue JJ, Shen SM, Wu MH, Chang WC, Liu CP, Chen SZ, Chen HY. Solution-processable, high-molecule-based trifluo romethyl-Iridium complex for extraordinarily high efficiency blue-green organic light-emitting diode. Chem Mater, 2009, 21: 2565–2567

    CAS  Google Scholar 

  43. Caspar JV, Meyer TJ. Application of the energy gap law to nonradiatlve, excited-state decay. J Phys Chem C, 1983, 87: 952–957

    CAS  Google Scholar 

  44. Fan CH, Sun PP, Su TH, Cheng CH. Host and dopant materials for idealized deep-red organic electrophosphorescence devices. Adv Mater, 2011, 23: 2981–2985

    CAS  Google Scholar 

  45. Fukagawa H, Shimizu T, Hanashima H, Osada Y, Suzuki M, Fujikake H. Highly efficient and stable red phosphorescent organic light-emitting diodes using platinum complexes. Adv Mater, 2012, 24: 5099–5103

    CAS  Google Scholar 

  46. Yao L, Yang B, Ma YG. Progress in next-generation organic electroluminescent materials: material design beyond exciton statistics. Sci China Chem, 2014, 57: 1–11

    Google Scholar 

  47. Zhang QS, Li B, Huang SP, Nomura H, Tanaka H, Adachi C. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat Photonics, 2014, 8: 326–332

    CAS  Google Scholar 

  48. Wang H, Xie LS, Peng Q, Meng LQ, Wang Y, Yi YP, Wang PF. Novel thermally activated delayed fluorescence materials-thioxanthone derivatives and their applications for highly efficient OLEDs. Adv Mater, 2014, 26: 5198–5204

    CAS  Google Scholar 

  49. Hu JY, Pu YJ, Satoh F, Kawata S, Katagiri H, Sasabe H, Kido J. Bisanthracene-based donor-acceptor-type light-emitting dopants: highly efficient deep-blue emission in organic light-emitting devices. Adv Funct Mater, 2014, 24: 2064–2071

    CAS  Google Scholar 

  50. Chou PY, Chou HH, Chen YH, Su TH, Liao CY, Lin HW, Lin WC, Yen HY, Chen IC, Cheng CH. Efficient delayed fluorescence via triplet-triplet annihilation for deep-blue electroluminescence. Chem Commun, 2014, 50: 6869–6871

    CAS  Google Scholar 

  51. Zhang ST, Yao L, Peng QM, Li WJ, Pan YY, Xiao R, Gao Y, Gu C, Wang ZM, Lu P, Li F, Su SJ, Yang B, Ma YG. Achieving a significantly increased efficiency in nondoped pure blue fluorescent OLED: a quasi-equivalent hybridized excited state. Adv Funct Mater, 2015, 25: 1755–1762

    CAS  Google Scholar 

  52. Li WJ, Pan YY, Xiao R, Peng QM, Zhang ST, Ma DG, Li F, Shen FZ, Wang YH, Yang B, Ma YG. Employing ∼100% excitons in OLEDs by utilizing a fluorescent molecule with hybridized local and charge-transfer excited state. Adv Funct Mater, 2014, 24: 1609–1614

    CAS  Google Scholar 

  53. Yao L, Zhang ST, Wang Rong, Li WJ, Shen FZ, Yang B, Ma YG. Highly efficient near-infrared organic light-emitting diode based on a butterfly-shaped donor-acceptor chromophore with strong solid-state fluorescence and a large proportion of radiative excitons. Angew Chem Int Ed, 2014, 126: 2151–2155

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zengqi Xie or Yuguang Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, T., Liu, L., Xie, Z. et al. Progress in small-molecule luminescent materials for organic light-emitting diodes. Sci. China Chem. 58, 907–915 (2015). https://doi.org/10.1007/s11426-015-5409-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5409-7

Keywords

Navigation