Skip to main content
Log in

Constructing a simple and sensitive electrochemical sensor for the determination of venlafaxine based on Fe3O4@SiO2/MWCNT nanocomposite-modified screen-printed electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Venlafaxine (VEN) is one of the antidepressants belonging to the general family of the selective norepinephrine and serotonin reuptake inhibitors. However, an overdose of VEN might cause the symptoms of serotonin toxicity, depression, cardiac conduction abnormalities, or seizure. In the current work, a simple, cost-efficient, and sensitive electrochemical sensor for determination of venlafaxine was described. Firstly, Fe3O4@SiO2/MWCNT (FSMW) nanocomposite was synthesized and after characteristics assesses its, has been utilized for modification of screen-printed electrode (FSMW/SPE) as working electrode for electrochemical determination of venlafaxine. Differential pulse voltammetry (DPV), chronoamperometry (CHA), and cyclic voltammetry (CV) have been also employed for electrochemical detection of venlafaxine and characterization of the modified electrode. The electron transfer coefficient (α = 0.3) and diffusion coefficient (D = 2.9 × 10− 6 cm2 s−1) of venlafaxine oxidation at the surface of FSMW/SPE were determined using electrochemical approaches. Venlafaxine’s reduction peak current was greatly increased by the modified electrode while its overpotential was decreased. The FSMW/SPE showed a linear current response for oxidation of venlafaxine between 0.5 and 200.0 µM with a 0.3 µM limit of detection (LOD). Additionally, the modified electrode has been effectively used to identify venlafaxine’s existence in actual samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Any raw data files should be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. E. Eslami, F. Farjami, Voltammetric determination of venlafaxine by using multiwalled carbon nanotube- ionic liquid composite electrode. J. Appl. Chem. Res. 12, 42–52 (2018)

    Google Scholar 

  2. B. Maddah, M. Cheraghveisi, M. Najafi, Developing a modified electrode based on La3+/Co3O4 nanocubes and its usage to electrochemical detection of venlafaxine. Int. J. Environ. Anal. Chem. 100, 121–133 (2020)

    Article  CAS  Google Scholar 

  3. T. Madrakian, R. Haryani, M. Ahmadi, A. Afkhami, A sensitive electrochemical sensor for rapid and selective determination of venlafaxine in biological fluids using carbon paste electrode modified with molecularly imprinted polymer-coated magnetite nanoparticles. J. Iran Chem. Soc. 13, 243–251 (2016)

    Article  CAS  Google Scholar 

  4. C.J. Whittington, T. Kendall, P. Fonagy, D. Cottrell, A. Cotgrove, E. Boddington, Selective serotonin reuptake inhibitors in childhood depression: systematic review of published versus unpublished data. Lancet. 363, 1341–1345 (2004)

    Article  CAS  Google Scholar 

  5. T. Madrakian, R. Haryani, M. Ahmadi, A. Afkhami, Spectrofluorometric determination of venlafaxine in biological samples after selective extraction on the superparamagnetic surface molecularly imprinted nanoparticles. Anal. Methods. 7, 428–435 (2015)

    Article  CAS  Google Scholar 

  6. M. Matoga, F. Pehourcq, K. Titier, F. Dumora, C. Jarry, Rapid high-performance liquid chromatographic measurement of venlafaxine and O-desmethylvenlafaxine in human plasma. Application to management of acute intoxications. J. Chromatogr. B 760, 213–218 (2001)

    Article  Google Scholar 

  7. R. Mandrioli, L. Mercolini, R. Cesta, S. Fanali, M. Amore, M.A. Raggi, Analysis of the second generation antidepressant venlafaxine and its main active metabolite O-desmethylvenlafaxine in human plasma by HPLC with spectrofluorimetric detection. J. Chromatogr. B 856, 88–94 (2007)

    Article  CAS  Google Scholar 

  8. O. Mastrogianni, G. Theodoridis, K. Spagou, D. Violante, T. Henriques, A. Pouliopoulos, K. Psaroulis, H. Tsoukali, N. Raikos, Determination of venlafaxine in post-mortem whole blood by HS-SPME and GC-NPD. Forensic Sci. Int. 215, 105–109 (2012)

    Article  CAS  Google Scholar 

  9. J. Bhatt, A. Jangid, G. Venkatesh, G. Subbaiah, S. Singh, Liquid chromatography-tandem mass spectrometry (LC-MS-MS) method for simultaneous determination of venlafaxine and its active metabolite O-desmethyl venlafaxine in human plasma. J. Chromatogr. B 829, 75–81 (2005)

    Article  CAS  Google Scholar 

  10. S. Rudaz, C. Stella, A.E. Balant-Gorgia, S. Fanali, J.L. Veuthey, Simultaneous stereoselective analysis of venlafaxine and O-desmethylvenlafaxine enantiomers in clinical samples by capillary electrophoresis using charged cyclodextrins. J. Pharm. Biomed. Anal. 23, 107–115 (2000)

    Article  CAS  Google Scholar 

  11. M. Kingbäck, M. Josefsson, L. Karlsson, J. Ahlner, F. Bengtsson, F.C. Kugelberg, B. Carlsson, Stereoselective determination of venlafaxine and its three demethylated metabolites in human plasma and whole blood by liquid chromatography with electrospray tandem mass spectrometric detection and solid phase extraction. J. Pharm. Biomed. Anal. 53, 583–590 (2010)

    Article  Google Scholar 

  12. H. Beitollahi, S. Jahani, S. Tajik, M.R. Ganjali, F. Faridbod, T. Alizadeh, Voltammetric determination of venlafaxine as an antidepressant drug employing Gd2O3 nanoparticles graphite screen printed electrode. J. Rare Earth. 37, 322–328 (2019)

    Article  CAS  Google Scholar 

  13. B.J. Sanghavi, A.K. Srivastava, Adsorptive stripping differential pulse voltammetric determination of venlafaxine and desvenlafaxine employing Nafion–carbon nanotube. Electrochim. Acta. 56, 4188–4196 (2011)

    Article  CAS  Google Scholar 

  14. S. Ariavand, M. Ebrahimi, E. Foladi, Design and construction of a novel and an efficient potentiometric sensor for determination of sodium ion in urban water samples. Chem. Methodol. 6, 886–904 (2022)

    CAS  Google Scholar 

  15. H. Karimi-Maleh, Y. Liu, Z. Li, R. Darabi, Y. Orooji, C. Karaman, F. Karimi, M. Baghayeri, J. Rouhi, L. Fu, Calf thymus ds-DNA intercalation with pendimethalin herbicide at the surface of ZIF-8/Co/rGO/C3N4/ds-DNA/SPCE; a bio-sensing approach for pendimethalin quantification confirmed by molecular docking study. Chemosphere 332, 138815 (2023)

    Article  CAS  Google Scholar 

  16. J. Mohanraj, D. Durgalakshmi, R.A. Rakkesh, S. Balakumar, S. Rajendran, H. Karimi-Maleh, Facile synthesis of paper based graphene electrodes for point of care devices: a double stranded DNA (dsDNA) biosensor. J. Colloid Interface Sci. 566, 463–472 (2020)

    Article  CAS  Google Scholar 

  17. Z. Zhang, H. Karimi-Maleh, In situ synthesis of label-free electrochemical aptasensor-based sandwich-like AuNPs/PPy/Ti3C2Tx for ultrasensitive detection of lead ions as hazardous pollutants in environmental fluids. Chemosphere. 324, 138302 (2023)

    Article  CAS  Google Scholar 

  18. H. Peyman, H. Roshanfekr, A. Babakhanian, H. Jafari, PVC membrane electrode modified by lawson as synthetic derivative ionophore for determination of cadmium in alloy and wastewater. Chem. Methodol. 5, 446–453 (2021)

    CAS  Google Scholar 

  19. S.Z. Mohammadi, H. Beitollahi, H. Allahabadi, T. Rohani, Disposable electrochemical sensor based on modified screen printed electrode for sensitive cabergoline quantification. J. Electroanal. Chem. 847, 113223 (2019)

    Article  CAS  Google Scholar 

  20. J.A. Buledi, N. Mahar, A. Mallah, A.R. Solangi, I.M. Palabiyik, N. Qambrani, F. Karimi, Y. Vasseghian, Karimi-Maleh, Electrochemical quantification of mancozeb through tungsten oxide/reduced graphene oxide nanocomposite: a potential method for environmental remediation. Food Chem. Toxicol. 161, 112843 (2022)

    Article  CAS  Google Scholar 

  21. Z. Mehdizadeh, S. Shahidi, A. Ghorbani-HasanSaraei, M. Limooei, M. Bijad, Monitoring of amaranth in drinking samples using voltammetric amplified electroanalytical sensor. Chem. Methodol. 6, 246–252 (2022)

    CAS  Google Scholar 

  22. S. Cheraghi, M.A. Taher, H. Karimi-Maleh, F. Karimi, M. Shabani-Nooshabadi, M. Alizadeh, A. Al-Othman, N. Erk, P.K.Y. Raman, C. Karaman, Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids. Chemosphere. 287, 132187 (2022)

    Article  CAS  Google Scholar 

  23. S.Z. Mohammadi, H. Beitollahi, M. Jasemi, A. Akbari, Nanomolar determination of methyldopa in the presence of large amounts of hydrochlorothiazide using a carbon paste electrode modified with graphene oxide nanosheets and 3-(4’-Amino-3’-hydroxy-biphenyl-4-yl)- acrylic acid. Electroanalysis. 27, 2421–2430 (2015)

    Article  CAS  Google Scholar 

  24. H. Karimi-Maleh, C.T. Fakude, N. Mabuba, G.M. Peleyeju, O.A. Arotiba, The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J. Colloid Interface Sci. 554, 603–610 (2019)

    Article  CAS  Google Scholar 

  25. M. Bijad, H. Karimi-Maleh, M. Farsi, S.A. Shahidi, An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. J. Food Meas. Charact. 12, 634–640 (2018)

    Article  Google Scholar 

  26. H. Roshanfekr, A simple specific dopamine aptasensor based on partially reduced graphene oxide–Au NPs composite. Prog. Chem. Biochem. Res. 6, 79–88 (2023)

    CAS  Google Scholar 

  27. Z. Zhang, H. Karimi-Maleh, Label-free electrochemical aptasensor based on gold nanoparticles/titanium carbide MXene for lead detection with its reduction peak as index signal. Adv. Compos. Hybrid. Mater. 6, 68 (2023)

    Article  CAS  Google Scholar 

  28. S.Z. Mohammadi, H. Beitollahi, M. Mousavi, Determination of hydroxylamine using a carbon paste electrode modified with graphene oxide nano sheets. Russ. J. Electrochem. 53, 374–379 (2017)

    Article  CAS  Google Scholar 

  29. A. Hosseini Fakhrabad, R. Sanavi Khoshnood, M.R. Abedi, M. Ebrahimi, Fabrication a composite carbon paste electrodes (CPEs) modified with multi-wall carbon nano-tubes (MWCNTs/N, N-Bis (salicyliden)-1,3-propandiamine) for determination of lanthanum (III). Eurasian Chem. Commun. 3, 627–634 (2021)

    Google Scholar 

  30. S.Z. Mohammadi, H. Beitollahi, Z. Dehghan, R. Hosseinzadeh, Electrochemical determination of ascorbic acid, uric acid and folic acid using carbon paste electrode modified with novel synthesized ferrocene derivative and core–shell magnetic nanoparticles in aqueous media. Appl. Organomet. Chem. 32, 4551 (2018)

    Article  Google Scholar 

  31. S.Z. Mohammadi, F. Mousazadeh, S. Tajik, Simultaneous determination of doxorubicin and dasatinib by using screen-printed electrode/Ni – fe layered double hydroxide. Ind. Eng. Chem. Res 62, 4646–4654 (2023)

    Article  CAS  Google Scholar 

  32. H. Karimi-Maleh, R. Darabi, F. Karimi, C. Karaman, S.A. Shahidi, N. Zare, M. Baghayeri, L. Fu, S. Rostamnia, J. Rouhi, State-of-art advances on removal, degradation and electrochemical monitoring of 4-aminophenol pollutants in real samples: a review. Environ. Res 222, 115338 (2023)

    Article  CAS  Google Scholar 

  33. S.Z. Mohammadi, S. Tajik, H. Beitollahi, Screen printed carbon electrode modified with magnetic core shell manganese ferrite nanoparticles for electrochemical detection of amlodipine. J. Serb Chem. Soc. 84, 1005–1016 (2019)

    Article  CAS  Google Scholar 

  34. Y. Zou, X. Zhou, L. Xie, H. Tang, F. Yan, Vertically-ordered mesoporous silica films grown on boron nitride-graphene composite modified electrodes for rapid and sensitive detection of carbendazim in real samples. Front. Chem. 10, 939510 (2022)

    Article  CAS  Google Scholar 

  35. Y. Zeng, M.B. Camarada, X. Lu, K. Tang, W. Li, D. Qiu, L. Bai, Detection and electrocatalytic mechanism of zearalenone using nanohybrid sensor based on copper-based metal-organic framework/magnetic Fe3O4-graphene oxide modified electrode. Food Chem. 370, 131024 (2022)

    Article  CAS  Google Scholar 

  36. S.Z. Mohammadi, H. Beitollahi, M. Kaykhaii, N. Mohammadizadeh, S. Tajik, R. Hosseinzadeh, Simultaneous determination of droxidopa and carbidopa by carbon paste electrode functionalized with NiFe2O4 nanoparticle and 2-(4-ferrocenyl-[1,2,3]triazol-1-yl)-1-(naphthalen-2-yl) ethenone. Measurement. 155, 107522 (2020)

    Article  Google Scholar 

  37. Y. Shao, Y. Zhu, R. Zheng, P. Wang, Z. Zhao, J. An, Highly sensitive and selective surface molecularly imprinted polymer electrochemical sensor prepared by au and MXene modified glassy carbon electrode for efficient detection of tetrabromobisphenol A in water. Adv. Compos. Hybrid. Mater. 5, 3104–3116 (2022)

    Article  CAS  Google Scholar 

  38. S.Z. Mohammadi, H. Beitollahi, M. Hassanzadeh, Voltammetric determination of tryptophan using a carbon paste electrode modified with magnesium core shell nanocomposite and ionic liquids. Anal. Bioanal Chem. Res 5, 55–65 (2018)

    CAS  Google Scholar 

  39. S.Z. Mohammadi, H. Beitollahi, S. Tajik, Nonenzymatic coated screen-printed electrode for electrochemical determination of acetylcholine. Micro Nano Syst. Lett. 6, 1–7 (2018)

    Article  CAS  Google Scholar 

  40. F. Hasanpour, M. Taei, M. Fouladgar, M. Salehi, Au nano dendrites/composition optimized nd-dopped cobalt oxide as an efficient electrocatalyst for ethanol oxidation. J. Appl. Organomet. Chem. 2, 188–196 (2022)

    Google Scholar 

  41. H. Peyman, Design and fabrication of modified DNA-Gp nano-biocomposite electrode for industrial dye measurement and optical confirmation. Prog. Chem. Biochem. Res. 5, 391–405 (2022)

    CAS  Google Scholar 

  42. L. Alwan, E. Al Samarrai, M. Mahmood, Q. Ali, O.A. Samarrai, Estimation and development of some biophysical characteristics of the drug Favipiravir used in the treatment of corona-virus using green chemistry technology. Eurasian Chem. Commun. 4, 835–851 (2022)

    CAS  Google Scholar 

  43. S. Janitabar Darzi, H. Bastami, Au decorated mesoporous TiO2 as a high performance photocatalyst towards crystal violet dye. Adv. J. Chem. A 5, 22–30 (2022)

    Google Scholar 

  44. I. Sheikhshoaie, A. Rezazadeh, S. Ramezanpour, Removal of pb (II) from aqueous solution by gel combustion of a new nano sized Co3O4/ZnO composite. Asian J. Nanosci. Mater. 5, 336–345 (2022)

    CAS  Google Scholar 

  45. V. Tallapaneni, L. Mude, D. Pamu, V.V.S.R. Karri, Formulation, characterization and in vitro evaluation of dual-drug loaded biomimetic chitosan-collagen hybrid nanocomposite scaffolds. J. Med. Chem. Sci. 5, 1059–1074 (2022)

    CAS  Google Scholar 

  46. R. Shete, P. Fernandes, B. Borhade, A. Pawar, M. Sonawane, N. Warude, Review of cobalt oxide nanoparticles: green synthesis, biomedical applications, and toxicity studies. J. Chem. Rev. 4, 331 (2022)

    CAS  Google Scholar 

  47. H. Shayegan, V. Safarifard, H. Taherkhani, M.A. Rezvani, Efficient removal of cobalt(II) ion from aqueous solution using amide-functionalized metal-organic framework. J. Appl. Organomet. Chem. 2, 109–118 (2022)

    Google Scholar 

  48. F. Nareetsile, J.T. Matshwele, S. Odisitse, Metallo-drugs as promising antibacterial agents and their modes of action. J. Med. Chem. Sci. 5, 1109–1131 (2022)

    CAS  Google Scholar 

  49. M. Sharma, S. Yadav, M. Srivastava, N. Ganesh, S. Srivastava, Promising anti-inflammatory bio-efficacy of saponin loaded silver nanoparticles prepared from the plant Madhuca longifolia. Asian J. Nanosci. Mater. 5, 313–326 (2022)

    CAS  Google Scholar 

  50. T.S.K. Naik, A.V. Kesavan, B.K. Swamy, S. Singh, A.G. Anil, V. Madhavi, P.C. Ramamurthy, Low cost, trouble-free disposable pencil graphite electrode sensor for the simultaneous detection of hydroquinone and catechol. Mater. Chem. Phys. 278, 125663 (2022)

    Article  Google Scholar 

  51. F.E. Ettadili, S. Aghris, F. Laghrib, A. Farahi, M. Bakasse, S. Lahrich, E. Mhammedi, M. A, Electrochemical detection of ornidazole in commercial milk and water samples using an electrode based on green synthesis of silver nanoparticles using cellulose separated from Phoenix dactylifera seed. Int. J. Biol. Macromol. 242, 124995 (2023)

    Article  CAS  Google Scholar 

  52. F. Wang, D. Zhao, W. Li, H. Zhang, B. Li, T. Hu, L. Fan, Rod-shaped units based cobalt (II) organic framework as an efficient electrochemical sensor for uric acid detection in serum. Microchem. J. 185, 108154 (2023)

    Article  CAS  Google Scholar 

  53. S.Z. Mohammadi, H. Beitollahi, M. Kaykhaii, N. Mohammadizadeh, A. Novel Electrochemical, Sensor based on graphene oxide nanosheets and ionic liquid binder for differential pulse voltammetric determination of droxidopa in pharmaceutical and urine samples. Rus J. Electrochem. 55, 1229–1236 (2019)

    Article  CAS  Google Scholar 

  54. X.J. Huang, A.M. O’Mahony, R.G. Compton, Microelectrode arrays for electrochemistry: approaches to fabrication. Small. 5, 776–788 (2009)

    Article  CAS  Google Scholar 

  55. J.P. Metters, R.O. Kadara, C.E. Banks, New directions in screen printed electroanalytical sensors: an overview of recent developments. Analyst. 136, 1067–1076 (2011)

    Article  CAS  Google Scholar 

  56. A. Gevaerd, C.E. Banks, M.F. Bergamini, Marcolino-Junior, graphene quantum dots modified screen‐printed electrodes as electroanalytical sensing platform for diethylstilbestrol. Electroanalysis. 31, 838–843 (2019)

    Article  CAS  Google Scholar 

  57. F. Garkani Nejad, H. Beitollahi, I. Sheikhshoaie, A UiO-66-NH2 MOF/PAMAM dendrimer nanocomposite for electrochemical detection of tramadol in the presence of acetaminophen in pharmaceutical formulations. Biosensors. 13, 514 (2023)

    Article  CAS  Google Scholar 

  58. V.C. Valsalakumar, A.S. Joseph, J. Piyus, S. Vasudevan, Polyaniline–graphene oxide composites decorated with ZrO2 nanoparticles for use in screen-printed electrodes for real-time l-tyrosine sensing. ACS Appl. Nano Mater. 6, 8382–8395 (2023)

    Article  CAS  Google Scholar 

  59. S. Moru, V. Sunil Kumar, S. Kummari, K. Yugender Goud, A disposable screen printed electrodes with hexagonal ni (OH)2 nanoplates embedded chitosan layer for the detection of depression biomarker. Micromachines. 14, 146 (2023)

    Article  Google Scholar 

  60. M. Bartolomé, M.L. Soriano, M.J. Villaseñor, Ã. Ríos, γ-Cyclodextrin-graphene quantum dots-chitosan modified screen-printed electrode for sensing of fluoroquinolones. Microchim. Acta. 190, 60 (2023)

    Article  Google Scholar 

  61. H. Beitollahi, F. Ebadinejad, F. Shojaie, M. Torkzadeh, Mahani, Magnetic core–shell Fe3O4@SiO2/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of amlodipine and hydrochlorothiazide. Anal. Methods. 8, 6185–6193 (2016)

    Article  CAS  Google Scholar 

  62. Z. Lu, J. Dai, X. Song, G. Wang, W. Yang, Facile synthesis of Fe3O4/SiO2 composite nanoparticles from primary silica particles. Colloids Surf. A 317, 450–456 (2008)

    Article  CAS  Google Scholar 

  63. H. Duan, X. Wang, Y. Wang, J. Li, C. Luo, Bioreceptor multi-walled carbon nanotubes@Fe3O4@SiO2–surface molecular imprinted polymer in an ultrasensitive chemiluminescent biosensor for bovine hemoglobin. RSC Adv. 5, 88492 (2015)

    Article  CAS  Google Scholar 

  64. V.W.O. Wanjeri, S. Gbashi, J.C. Ngila, P. Njobeh, M.A. Mamo, P.G. Ndungu, Chemical Vapour Deposition of MWCNT on Silica Coated Fe3O4 and Use of Response Surface Methodology for Optimizing the Extraction of Organophosphorus Pesticides from Water. Int. J. Anal. Chem. 2019, 4564709 (2019)

    Article  Google Scholar 

  65. S.Z. Mohammadi, H. Beitollahi, H. Fadaeian, Voltammetric determination of isoproterenol using a graphene oxide nano sheets paste electrode. J. Anal. Chem. 73, 705–712 (2018)

    Article  CAS  Google Scholar 

  66. A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd edn. (Wiley, New York, 2001), pp.100–137

    Google Scholar 

  67. L. Ding, L. Li, W. You, Z.N. Gao, T.L. Yang, Electrocatalytic oxidation of venlafaxine at a multiwall carbon nanotubes-ionic liquid gel modified glassy carbon electrode and its electrochemical determination. Croatica Chem. Acta. 88, 81–87 (2015)

    Article  CAS  Google Scholar 

  68. M.A. Khalilzadeh, S. Tajik, H. Beitollahi, R.A. Venditti, Green synthesis of magnetic nanocomposite with iron oxide deposited on cellulose nanocrystals with copper (Fe3O4@CNC/Cu): investigation of catalytic activity for the development of a venlafaxine electrochemical sensor. Ind. Eng. Chem. Res. 59, 4219–4228 (2020)

    Article  CAS  Google Scholar 

  69. P. Mohammadzadeh Jahani, H. Akbari Javar, H. Mahmoudi-Moghaddam, A new electrochemical sensor based on Europium-doped NiO nanocomposite for detection of venlafaxine. Measurement. 173, 108616 (2021)

    Article  Google Scholar 

  70. S. Morais, C.P.M.C.A. Ryckaert, C. Delerue-Matos, Adsorptive stripping voltammetric determination of venlafaxine in urine with a mercury film microelectrode. Anal. Lett. 36, 2515–2526 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Bam University of Medical Sciences, Bam, Iran, provided financial assistance for this project (no. 98000075), which the authors gratefully thank.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by FM and YN. The first draft of the manuscript was written by FM and YN. The Revise & Editing was done by SZM. The verification and data curation were done by ST. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Farideh Mousazadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 0.2 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, S.Z., Tajik, S., Mousazadeh, F. et al. Constructing a simple and sensitive electrochemical sensor for the determination of venlafaxine based on Fe3O4@SiO2/MWCNT nanocomposite-modified screen-printed electrode. J Mater Sci: Mater Electron 34, 1641 (2023). https://doi.org/10.1007/s10854-023-11030-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11030-4

Navigation