Skip to main content

Advertisement

Log in

Highly electrochemically active Ti3C2Tx MXene/MWCNT nanocomposite for the simultaneous sensing of paracetamol, theophylline, and caffeine in human blood samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The facile fabrication is reported of highly electrochemically active Ti3C2Tx MXene/MWCNT (3D/1D)-modified screen-printed carbon electrode (SPE) for the efficient simultaneous electrochemical detection of paracetamol, theophylline, and caffeine in human blood samples. 3D/1D Ti3C2Tx MXene/MWCNT nanocomposite was synthesized using microwave irradiation and ultrasonication processes. Then, the Ti3C2Tx/MWCNT-modified SPE electrode was fabricated and thoroughly characterized towards its physicochemical and electrochemical properties using XPS, TEM, FESEM, XRD, electrochemical impedance spectroscopy, cyclic voltammetry, and differential pulse voltammetry techniques. As-constructed Ti3C2Tx-MWCNT/SPE offers excellent electrochemical sensing performance with good detection limits (0.23, 0.57, and 0.43 µM) and wide linear ranges (1.0 ~ 90.1, 2.0 ~ 62.0, and 2.0–90.9 µM) for paracetamol, caffeine, and theophylline, respectively,  in the human samples. Notably, the non-enzymatic electroactive nanocomposite-modified electrode has depicted a semicircle Nyquist plot with low charge transfer resistance (Rct∼95 Ω), leading to high ionic diffusion and facilitating an excellent electron transfer path. All the above results in efficient stability, reproducibility, repeatability, and sensitivity compared with other reported works, and thus, it claims its practical utilization in realistic clinical applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data available on request.

References

  1. Mekassa B, Tessema M, Chandravanshi BS (2017) Simultaneous determination of caffeine and theophylline using square wave voltammetry at poly (L-aspartic acid)/functionalized multi-walled carbon nanotubes composite modified electrode. Sens Bio-sens Res 16:46–54

    Google Scholar 

  2. Kan X, Liu T, Li C, Zhou H, Xing Z, Zhu A (2012) A novel electrochemical sensor based on molecularly imprinted polymers for caffeine recognition and detection. J Solid State Electrochem 16:3207–3213

    CAS  Google Scholar 

  3. Wester N, Mikladal BF, Varjos I, Peltonen A, Kalso E, Lilius T, Laurila T, Koskinen J (2020) Disposable nafion-coated single-walled carbon nanotube test strip for electrochemical quantitative determination of acetaminophen in a finger-prick whole blood sample. Anal Chem 92:13017–13024

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang H, Cao G, Huang Y, Lin L, Zheng F, Lin L, Liu F, Li S (2022) Nitrogen-doped carbon@TiO2 double-shelled hollow spheres as an electrochemical sensor for simultaneous determination of dopamine and paracetamol in human serum and saliva. J Pharm Anal 12:436–445

    PubMed  Google Scholar 

  5. Boumya W, Taoufik N, Achak M, Barka N (2021) Chemically modified carbon-based electrodes for the determination of paracetamol in drugs and biological samples. J Pharm Anal 11:138–154

    PubMed  Google Scholar 

  6. Devaraj M, Deivasigamani RK, Jayadevan S (2013) Controlled growth and molecular self-assembly of Au nanoparticles to Au nanochains: application towards enhancement for the electrochemical determination of paracetamol. Anal Methods 5:3503–3515

    CAS  Google Scholar 

  7. Kushwaha CS, Shukla SK (2020) Electrochemical sensing of paracetamol using iron oxide encapsulated in chitosan-grafted-polyaniline. ACS Appl Poly Mater 2:2252–2259

    CAS  Google Scholar 

  8. Fu L, Lai G, Yu A (2015) Preparation of β-cyclodextrin functionalized reduced graphene oxide: application for electrochemical determination of paracetamol. Rsc Adv 5:76973–76938

    CAS  Google Scholar 

  9. Silva W, Ghica ME, Brett CM (2018) Gold nanoparticle decorated multiwalled carbon nanotube modified electrodes for the electrochemical determination of theophylline. Anal methods 47:5634–5642

    Google Scholar 

  10. Crapnell RD, Banks CE (2021) Electroanalytical overview: the electroanalytical detection of theophylline. Talanta 3:100037

    Google Scholar 

  11. Hu X, Xi J, Xia Y, Zhao F, Zeng B (2019) Space-confined synthesis of ordered mesoporous carbon doped with single-layer MoS2–boron for the voltammetric determination of theophylline. Microchim Acta 186:1–8

    Google Scholar 

  12. Duan Y, Wang A, Ding Y, Li L, Duan D, Lin J, Yu C, Liu J (2021) Fabrication of poly-sulfosalicylic acid film decorated pure carbon fiber as electrochemical sensing platform for detection of theophylline. J Pharm Biomed Anal 192:113663

    CAS  PubMed  Google Scholar 

  13. Svorc L (2013) Determination of caffeine: a comprehensive review on electrochemical methods. Int J Electrochem Sci 8:5755–5773

    CAS  Google Scholar 

  14. Fernandes DM, Silva N, Pereira C, Moura C, Magalhaes JM, Bachiller-Baeza B, Rodriguez-Ramos I, Guerrero-Ruiz A, Delerue-Matos C, Freire C (2015) MnFe2O4@CNT-N as novel electrochemical nanosensor for determination of caffeine, acetaminophen and ascorbic acid. Sens Actuators B: Chem 218:128–136

    CAS  Google Scholar 

  15. Selvam S, Balamuralitharan B, Karthick SN, Hemalatha KV, Prabakar K, Kim HJ (2016) Simultaneous electrochemical deposition of an e-rGO/β-CD/MnO2 ternary composite for a self-powered supercapacitor based caffeine sensor. Anal Methods 44:7937–7943

    Google Scholar 

  16. Wen M, Xing Y, Liu G, Hou S, Hou S (2022) Electrochemical sensor based on Ti3C2 membrane doped with UIO-66-NH2 for dopamine. Microchim Acta 189(4):141

    CAS  Google Scholar 

  17. Eagambaram M, Kumar K (2022) Design of an efficient tin selenide-based ternary nanocomposite electrode for simultaneous determination of paracetamol, tryptophan, and caffeine. ACS Omega 7(40):35486–35495

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Palur K, Archakam SC, Koganti B (2020) Chemometric assisted UV spectrophotometric and RP-HPLC methods for simultaneous determination of paracetamol, diphenhydramine, caffeine and phenylephrine in tablet dosage form. Spectrochim Acta-A: Mol Biomol 243:118801

    CAS  Google Scholar 

  19. Sereshti H, Khosraviani M, Samadi S, Amini-Fazl MS (2014) Simultaneous determination of theophylline, theobromine and caffeine in different tea beverages by graphene-oxide based ultrasonic-assisted dispersive micro solid-phase extraction combined with HPLC-UV. RSC Adv 87:47114–24710

    Google Scholar 

  20. Dewani AP, Dabhade SM, Bakal RL, Gadewar CK, Chandewar AV, Patra S (2015) Development and validation of a novel RP-HPLC method for simultaneous determination of paracetamol, phenylephrine hydrochloride, caffeine, cetirizine and nimesulide in tablet formulation. Arab J Chem 8:591–598

    CAS  Google Scholar 

  21. Murugan E, Kumar K (2019) Fabrication of SnS/TiO2@GO composite coated glassy carbon electrode for concomitant determination of paracetamol, tryptophan, and caffeine in pharmaceutical formulations. Anal Chem 91:5667–5676

    CAS  PubMed  Google Scholar 

  22. Barbas Arribas C, Alguacil Merino LF (2006) Capillary electrophoresis for caffeine and pyroglutamate determination in coffees. J Pharm Biomed Anal 41:1095–1100

    Google Scholar 

  23. Shu X, Bian F, Wang Q, Qin X, Wang Y (2017) Electrochemical sensor for simultaneous determination of theophylline and caffeine based on a novel poly (folic acid)/graphene composite film modified electrode. Int J Electrochem Sci 12(5):4251–4264

    CAS  Google Scholar 

  24. Gao Y, Wang H, Guo L (2013) Simultaneous determination of theophylline and caffeine by large mesoporous carbon/Nafion modified electrode. J Electroanal Chem 706:7–12

    CAS  Google Scholar 

  25. Ray SC, Jana NR (2017) Carbon nanomaterials for biological and medical applications. Chapter 3 - application of carbon-based nanomaterials as biosensor pp 87–127. https://doi.org/10.1016/B978-0-323-47906-6.00003-5

  26. Jose J, Subramanian V, Shaji S, Sreeja PB (2021) An electrochemical sensor for nanomolar detection of caffeine based on nicotinic acid hydrazide anchored on graphene oxide (NAHGO). Sci Rep 11:11662

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tajik S, Taher MA, Beitollahi H (2014) Application of a new ferrocene-derivative modified-graphene paste electrode for simultaneous determination of isoproterenol, acetaminophen and theophylline. Sens Actuators B: Chem 197:228–236

    CAS  Google Scholar 

  28. Murugan E, Dhamodharan A (2022) MoS2/PANI/f-MWCNTs ternary nanocomposite modified electrode for selective and concomitant sensing of vanillin, theophylline and caffeine. Diam Relat Mater 128:109268

    CAS  Google Scholar 

  29. Kaur H, Siwal SS, Chauhan G, Saini AK, Kumari A, Thakur VK (2022) Recent advances in electrochemical-based sensors amplified with carbon-based nanomaterials (CNMs) for sensing pharmaceutical and food pollutants. Chemosphere 304:135182

    CAS  PubMed  Google Scholar 

  30. Hallaj R, Soltani E, Mafakheri S, Ghadermazi M (2021) A surface-modified silicon carbide nanoparticles based electrochemical sensor for free interferences determination of caffeine in tea and coffee. Mater Sci Eng 274:115473

    CAS  Google Scholar 

  31. Kalambate PK, Dhanjai SA, Li Y, Shen Y, Huang Y (2020) An electrochemical sensor for ifosfamide, acetaminophen, domperidone, and sumatriptan based on self-assembled MXene/MWCNT/chitosan nanocomposite thin film. Microchim Acta 187:1–12

    Google Scholar 

  32. Montaseri H, Forbes PB (2018) Analytical techniques for the determination of acetaminophen. Trends Analyt Chem 108:122–134

    CAS  Google Scholar 

  33. Mohajer F, Ziarani GM, Badiei A, Iravani S, Varma RS (2023) MXene-carbon nanotube composites: properties and applications. Nanomaterials 13(2):345

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Guan Q, Guo H, Xue R, Wang M, Wu N, Cao Y, Zhao X, Yang W (2021) Electrochemical sensing platform based on covalent organic framework materials and gold nanoparticles for high sensitivity determination of theophylline and caffeine. Microchim Acta 188:1–11

    Google Scholar 

  35. Shao Y, Wei L, Wu X, Jiang C, Yao Y, Peng B, Chen H, Huangfu J, Ying Y, Zhang CJ, Ping J (2022) Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nat Commun 13(1):3223

    PubMed  PubMed Central  Google Scholar 

  36. Elancheziyan M, Eswaran M, Shuck CE, Senthilkumar S, Elumalai S, Dhanusuraman R, Ponnusamy VK (2021) Facile synthesis of polyaniline/titanium carbide (MXene) nanosheets/palladium nanocomposite for efficient electrocatalytic oxidation of methanol for fuel cell application. Fuel 303:121329

    CAS  Google Scholar 

  37. Nikhil P, Vasanth S, Ponpandian N, Viswanathan C (2023) Synthesis effect on surface functionalized Ti3C2Tx MXene supported nickel oxide nanocomposites with enhanced specific capacity for supercapacitor application. J Energy Storage 72:108414

    Google Scholar 

  38. Shahzad F, Zaidi SA, Naqvi RA (2022) 2D transition metal carbides (MXene) for electrochemical sensing: A review. Crit Rev Anal Chem 52:848–864

    CAS  PubMed  Google Scholar 

  39. Zhan X, Si C, Zhou J, Sun Z (2020) MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz 5:235–258

    CAS  Google Scholar 

  40. Bilgi M, Ayranci E (2016) Biosensor application of screen-printed carbon electrodes modified with nanomaterials and a conducting polymer: ethanol biosensors based on alcohol dehydrogenase. Sens Actuators, B Chem 237:849–855

    CAS  Google Scholar 

  41. Amin M, Abdullah BM, Wylie SR, Rowley-Neale SJ, Banks CE, Whitehead KA (2023) The voltammetric detection of cadaverine using a diamine oxidase and multi-walled carbon nanotube functionalised electrochemical biosensor. Nanomaterials 13:36

    CAS  Google Scholar 

  42. Zhao X, Radovic M, Green MJ (2020) Synthesizing mxene nanosheets by water-free etching. Chem 6:544–546

    CAS  Google Scholar 

  43. Pang SY, Wong YT, Yuan S, Liu Y, Tsang MK, Yang Z, Huang H, Wong WT, Hao J (2019) Universal strategy for hf-free facile and rapid synthesis of two-dimensional mxenes as multifunctional energy materials. J Am Chem Soc 141:9610–9616

    CAS  PubMed  Google Scholar 

  44. Ram Kumar K, Maiyalagan T (2023) Iron nickel sulphide embedded on multi-walled carbon nanotubes as efficient electrocatalysts for oxygen evolution reaction in alkaline medium. Ceram Int 49:1195–1202

    CAS  Google Scholar 

  45. Yun T, Lee GS, Choi J, Kim H, Yang GG, Lee HJ, Kim JG, Lee HM, Koo CM, Lim J, Kim SO (2021) Multidimensional Ti3C2Tx mxene architectures via interfacial electrochemical self-assembly. ACS Nano 15:10058–10066

    CAS  PubMed  Google Scholar 

  46. Hasan MM, Hossain MM, Chowdhury HK (2021) Two-dimensional mxene-based flexible nanostructures for functional nanodevices: a review. J Mater Chem A 9:3231–3269

    CAS  Google Scholar 

  47. Elancheziyan M, Senthilkumar S (2021) Redox-active gold nanoparticle-encapsulated poly (amidoamine) dendrimer for electrochemical sensing of 4-aminophenol. J Mole Liquids 325:115131

    CAS  Google Scholar 

  48. Aschemacher N, Gegenschatz S, Teglia CM, Siano AS, Gutierrez FA, Goicoechea HC (2023) Highly sensitive and selective electrochemical sensor for simultaneous determination of gallic acid, theophylline and caffeine using poly (l-proline) decorated carbon nanotubes in biological and food samples. Talanta 267:125246

    PubMed  Google Scholar 

  49. Rajamani AR, Peter SC (2018) Novel nanostructured Pt/CeO2@Cu2O carbon-based electrode to magnify the electrochemical detection of the neurotransmitter dopamine and analgesic paracetamol. ACS Appl Nano Mater 9:5148–5157

    Google Scholar 

  50. Luo J, Ma Q, Wei W, Zhu Y, Liu R, Liu X (2016) Synthesis of water-dispersible molecularly imprinted electroactive nanoparticles for the sensitive and selective paracetamol detection. ACS Appl Mater Interfaces 32:21028–21038

    Google Scholar 

  51. Alothman ZA, Bukhari N, Wabaidur SM, Haider S (2010) Simultaneous electrochemical determination of dopamine and acetaminophen using multiwall carbon nanotubes modified glassy carbon electrode. Sens Actuators B Chem 146:314–320

    CAS  Google Scholar 

  52. Cheemalapati S, Palanisamy S, Mani V, Chen SM (2013) Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon electrode. Talanta 117:297–304

    CAS  PubMed  Google Scholar 

  53. Kang X, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81:754–759

    CAS  PubMed  Google Scholar 

  54. Zhao Y, Xia Y, Zhang J, Liu H, Yi Y, Zhu G (2023) Ag-Ti3C2Tx MXenes nanoribbons coupled with carbon nanotubes: preparation, characterization and application for highly sensitive ratiometric voltammetric sensing of paracetamol. Microchem J 185:108207

    CAS  Google Scholar 

  55. Liao D, Liu Z, Huang R, Yu J, Jiang X (2022) In-situ construction of porous carbon on embedded N-doped MXene nanosheets composite for simultaneous determination of 4-aminophenol and acetaminophen. Microchem J 175:107067

    CAS  Google Scholar 

  56. Rezvani SA, Soleymanpour A (2019) Application of a sensitive electrochemical sensor modified with WO3 nanoparticles for the trace determination of theophylline. Microchem J 149:104005

    CAS  Google Scholar 

  57. Peng A, Yan H, Luo C, Wang G, Wang Y, Ye X, Ding H (2017) Electrochemical determination of theophylline pharmacokinetic under the effect of roxithromycin in rats by the MWNTs/Au/poly-L-lysine modified sensor. I J Electrochem Sci 12:330–346

    CAS  Google Scholar 

  58. Wang Y, Ding Y, Li L, Hu P (2018) Nitrogen-doped carbon nanotubes decorated poly (L-Cysteine) as a novel, ultrasensitive electrochemical sensor for simultaneous determination of theophylline and caffeine. Talanta 178:449–457

    CAS  PubMed  Google Scholar 

  59. Zhu YH, Zhang ZL, Pang DW (2005) Electrochemical oxidation of theophylline at multi-wall carbon nanotube modified glassy carbon electrodes. J Electroanal Chem 581:303–309

    CAS  Google Scholar 

  60. Malode SJ, Shetti NP, Nandibewoor ST (2012) Voltammetric behavior of theophylline and its determination at multi-wall carbon nanotube paste electrode. Colloids Surf B 97:1–6

    CAS  Google Scholar 

  61. Zhang Y, Shang J, Jiang B, Zhou X, Wang J (2017) Electrochemical determination of caffeine in oolong tea based on polyelectrolyte functionalized multi-walled carbon nanotube. Int J Electrochem Sci 12:2552–2562

    CAS  Google Scholar 

  62. Habibi B, Abazari M, Pournaghi-Azar MH (2012) A carbon nanotube modified electrode for determination of caffeine by differential pulse voltammetry. Chin J Catal 33:1783–1790

    CAS  Google Scholar 

  63. Yang S, Yang R, Li G, Qu L, Li J, Yu L (2010) Nafion/multi-wall carbon nanotubes composite film coated glassy carbon electrode for sensitive determination of caffeine. J Electroanal Chem 639:77–82

    CAS  Google Scholar 

  64. Zhang J, Wang LP, Guo W, Peng XD, Li M, Yuan ZB (2011) Sensitive differential pulse stripping voltammetry of caffeine in medicines and cola using a sensor based on multi-walled carbon nanotubes and nafion. Internat J electrochem Sci 6:997–1006

    CAS  Google Scholar 

Download references

Funding

This work was partially supported by the Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan and by the Kaohsiung Medical University Research Center Grant (KMU-TC113A01). This research work was also supported financially by the grants NSTC110-2113-M-037-009-, and NSTC 112-2113-M-037-005- from the National Science and Technology Council, Taiwan. The authors are thankful to operators and gratefully acknowledge the use of HR-TEM, FE-SEM, pXRD, and XPS equipment provided by the Instrument Center (core facility) of National Cheng Kung University, Tainan, Taiwan, and instrument facilities provided by National Sun-yet Sen University, Kaohsiung, Taiwan, for this research work. In addition, we also thank KMU-NHRI for their bilateral collaborative research grant support (NHRIKMU-113-I005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinoth Kumar Ponnusamy.

Ethics declarations

Ethical approval

This research did not involve human or animal samples.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 775 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mari, E., Duraisamy, M., Eswaran, M. et al. Highly electrochemically active Ti3C2Tx MXene/MWCNT nanocomposite for the simultaneous sensing of paracetamol, theophylline, and caffeine in human blood samples. Microchim Acta 191, 212 (2024). https://doi.org/10.1007/s00604-024-06273-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06273-9

Keywords

Navigation