Skip to main content
Log in

Effects of organic additives on film characteristics of flexible PEDOT:PSS/latex

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, organic additives were incorporated into a flexible conductive film based on natural rubber latex (NRL) and PEDOT:PSS to improve both its electrical and mechanical properties. The additives, which included carbon black (CB), reduced graphene oxide (rGO), and polypyrrole (PPy), were dispersed in the PEDOT:PSS with NRL film. The resulting films exhibited enhanced electrical and mechanical stability, as well as improved responsiveness to compressive stimuli. The CB acted as a crosslinker of isoprene chains and enhanced charge percolation, providing higher electrical and mechanical stability. The rGO contributed to increased mechanical strength and slower relaxation time, while the PPy contributed to percolation and a higher number of conductive polymer chains in the blend. The best electromechanical performance was achieved with a blend containing 3.5 CB, 10.0 rGO, and 5.0 PPy, with initial resistivities of 2.3 ± 0.2 Ω cm, 3.4 ± 0.2 Ω cm, and 1.8 ± 0.2 Ω cm, and moduli of elasticity of 90.4 KPa, 85.7 KPa, and 134.6 KPa, respectively. These improvements suggest that the new compositions may be useful for a range of applications, including bioelectronics and piezoresistive devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  1. A. Tricoli, N. Nasiri, S. De, Wearable and miniaturized sensor technologies for personalized and preventive medicine. Adv. Funct. Mater. 27, 1605271 (2017). https://doi.org/10.1002/adfm.201605271

    Article  CAS  Google Scholar 

  2. T.Q. Trung, N.-E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 28, 4338–4372 (2016). https://doi.org/10.1002/adma.201504244

    Article  CAS  Google Scholar 

  3. W.H. Wu, A.A.T. Bui, M.A. Batalin, D. Liu, W.J. Kaiser, Incremental diagnosis method for intelligent wearable sensor systems. IEEE Trans. Inf. Technol. Biomed. 11, 553–562 (2007). https://doi.org/10.1109/titb.2007.897579

    Article  Google Scholar 

  4. G. Das, S. Mandal, S. Dhar, P.B. Bhargav, C. Banerjee, S. Mukhopadhyay, A.K. Barua, Synthesis of ITO nanoparticles at room temperature using plasma treatment process and use it as back reflector in a-Si flexible solar cell. Surf. Interfaces. 7, 83–86 (2017). https://doi.org/10.1016/j.surfin.2017.03.002

    Article  CAS  Google Scholar 

  5. D. Khodagholy, J. Rivnay, M. Sessolo, M. Gurfinkel, P. Leleux, L.H. Jimison, E. Stavrinidou, T. Herve, S. Sanaur, R.M. Owens, G.G. Malliaras, High transconductance organic electrochemical transistors. Nat. Commun. 4, 2133 (2013). https://doi.org/10.1038/ncomms3133

    Article  CAS  Google Scholar 

  6. F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Recent progress in resistive random access memories: materials, switching mechanisms, and performance. Mater. Sci. Eng. R Reports. 83, 1–59 (2014). https://doi.org/10.1016/j.mser.2014.06.002

    Article  Google Scholar 

  7. M. Zou, Y. Ma, X. Yuan, Y. Hu, J. Liu, Z. Jin, Flexible devices: from materials, architectures to applications. J. Semicond. 39, 11010 (2018). https://doi.org/10.1088/1674-4926/39/1/011010

    Article  CAS  Google Scholar 

  8. J.Y. Kim, J.H. Jung, D.E. Lee, J. Joo, Enhancement of electrical conductivity of poly (3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synth. Met. 126, 311–316 (2002). https://doi.org/10.1016/S0379-6779(01)00576-8

    Article  CAS  Google Scholar 

  9. E. Liu, C. Liu, Z. Zhu, H. Shi, Q. Jiang, F. Jiang, J. Xu, J. Xiong, Y. Hu, Enhanced thermoelectric performance of PEDOT:PSS films by solvent thermal treatment. J. Polym. Res. 22, 240 (2015). https://doi.org/10.1007/s10965-015-0883-3

    Article  CAS  Google Scholar 

  10. S. Kirchmeyer, K. Reuter, Scientific importance, properties and growing applications of poly (3,4-ethylenedioxythiophene). J. Mater. Chem. 15, 2077–2088 (2005). https://doi.org/10.1039/B417803N

    Article  CAS  Google Scholar 

  11. H.A. Méndez-Pinzón, D.R. Pardo-Pardo, J.P. Cuéllar-Alvarado, J.C. Salcedo-Reyes, R. Vera, Analysis of the current–voltage characteristics of polymer-based organic light-emitting diodes (OLEDs) deposited by spin coating. Univ. Sci. 15, 68–76 (2010)

    Article  Google Scholar 

  12. F.M. Machado, Nanotubos de carbono como nanoadsorventes na remoção de corantes sintéticos de soluções aquosos: um estudo experimental e teórico, Programa Pós-Graduação Eng. Minas. 1–154 (2012)

  13. F. Liu, Y. Cao, M. Yi, L. Xie, W. Huang, N. Tang, W. Zhong, Y. Du, Thermostability, photoluminescence, and electrical properties of reduced graphene oxide-carbon nanotube hybrid materials. Crystals. 3, 28–37 (2013). https://doi.org/10.3390/cryst3010028

    Article  CAS  Google Scholar 

  14. Y. Cao, G. Yu, C. Zhang, R. Menon, A.J. Heeger, Polymer light-emitting diodes with polyethylene dioxythiophene–polystyrene sulfonate as the transparent anode. Synth. Met. 87, 171–174 (1997). https://doi.org/10.1016/S0379-6779(97)03823-X

    Article  CAS  Google Scholar 

  15. G. Prunet, F. Pawula, G. Fleury, E. Cloutet, A.J. Robinson, G. Hadziioannou, A. Pakdel, A review on conductive polymers and their hybrids for flexible and wearable thermoelectric applications. Mater. Today Phys. 18, 100402 (2021). https://doi.org/10.1016/j.mtphys.2021.100402

    Article  CAS  Google Scholar 

  16. Y. Yang, G. Zhao, X. Cheng, H. Deng, Q. Fu, Stretchable and healable conductive elastomer based on PEDOT:PSS/Natural Rubber for Self-Powered temperature and strain sensing. ACS Appl. Mater. Interfaces. 13, 14599–14611 (2021). https://doi.org/10.1021/acsami.1c00879

    Article  CAS  Google Scholar 

  17. M.H. Boratto, N.L. Nozella, R.A. Ramos, C.F.O. Graeff, Flexible conductive blend of natural rubber latex with PEDOT:PSS. APL Mater. 8, 121107 (2020). https://doi.org/10.1063/5.0017936

    Article  CAS  Google Scholar 

  18. P.B. Aielo, F.A. Borges, K.M. Romeira, M.C.R. Miranda, L.B. de Arruda, P.N.L. Filho, B. de Drago, R.D. Herculano, Evaluation of sodium diclofenac release using natural rubber latex as carrier. Mater. Res. 17, 146–152 (2014). https://doi.org/10.1590/S1516-14392014005000010

    Article  Google Scholar 

  19. S. Savagatrup, E. Chan, S.M. Renteria-Garcia, A.D. Printz, A.V. Zaretski, T.F. O’Connor, D. Rodriquez, E. Valle, D.J. Lipomi, Plasticization of PEDOT:PSS by common additives for mechanically robust organic solar cells and wearable sensors. Adv. Funct. Mater. 25, 427–436 (2015). https://doi.org/10.1002/adfm.201401758

    Article  CAS  Google Scholar 

  20. S.S. Karade, B.R. Sankapal, Room temperature PEDOT:PSS encapsulated MWCNTs thin film for electrochemical supercapacitor. J. Electroanal. Chem. 771, 80–86 (2016). https://doi.org/10.1016/j.jelechem.2016.04.012

    Article  CAS  Google Scholar 

  21. S.A. Moiz, A.N.M. Alahmadi, A.J. Aljohani, Design of silicon nanowire array for PEDOT:PSS-silicon nanowire-based hybrid solar cell. Energies (2020). https://doi.org/10.3390/en13153797

    Article  Google Scholar 

  22. B. Bessaire, M. Mathieu, V. Salles, T. Yeghoyan, C. Celle, J.-P. Simonato, A. Brioude, Synthesis of continuous conductive PEDOT:PSS nanofibers by electrospinning: a conformal coating for optoelectronics. ACS Appl. Mater. Interfaces. 9, 950–957 (2017). https://doi.org/10.1021/acsami.6b13453

    Article  CAS  Google Scholar 

  23. J. Park, A. Lee, Y. Yim, E. Han, Electrical and thermal properties of PEDOT:PSS films doped with carbon nanotubes. Synth. Met. 161, 523–527 (2011). https://doi.org/10.1016/j.synthmet.2011.01.006

    Article  CAS  Google Scholar 

  24. S. Promkotra, T. Kangsadan, Tensile strength of PHBV/natural rubber latex mixtures. MATEC Web Conf. (2015). https://doi.org/10.1051/matecconf/20153501001

    Article  Google Scholar 

  25. Y. Fukahori, Mechanism of the self-reinforcement of cross-linked NR generated through the strain-induced crystallization. Polym. (Guildf). 51, 1621–1631 (2010). https://doi.org/10.1016/j.polymer.2010.01.059

    Article  CAS  Google Scholar 

  26. S. Qiu, Z. Lin, Y. Zhou, D. Wang, L. Yuan, Y. Wei, T. Dai, L. Luo, G. Chen, Highly selective colorimetric bacteria sensing based on protein-capped nanoparticles. Analyst. 140, 1149–1154 (2015). https://doi.org/10.1039/C4AN02106A

    Article  CAS  Google Scholar 

  27. T. Augusto, Síntese Química de Poli (3,4- etilenodioxitiofeno) (PEDOT): Novas Arquiteturas para Diferentes Aplicações, 161, (2012)

  28. T.M.B.F. Oliveira, M. Fátima Barroso, S. Morais, P. de Lima-Neto, A.N. Correia, M.B.P.P. Oliveira, C. Delerue-Matos, Biosensor based on multi-walled carbon nanotubes paste electrode modified with laccase for pirimicarb pesticide quantification. Talanta. 106, 137–143 (2013)

    Article  CAS  Google Scholar 

  29. M.D. Fatibello-filho, Orlando; Capelato, biossensores. Quim. Nova. 1, 39 (1992)

    Google Scholar 

  30. P. Li, K. Sun, J. Ouyang, Stretchable and conductive polymer films prepared by solution blending. ACS Appl. Mater. Interfaces. 7, 18415–18423 (2015). https://doi.org/10.1021/acsami.5b04492

    Article  CAS  Google Scholar 

  31. S. Abdolhosseinzadeh, H. Asgharzadeh, H.S. Kim, Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep. 5, 10160 (2015). https://doi.org/10.1038/srep10160

    Article  CAS  Google Scholar 

  32. D.L.S. Agostini, C.J.L. Constantino, A.E. Job, Thermal degradation of both latex and latex cast films forming membranes. J. Therm. Anal. Calorim. 91, 703–707 (2008). https://doi.org/10.1007/s10973-007-8351-x

    Article  CAS  Google Scholar 

  33. R.W. Soares, V.J. Menezes, M.V.A. Fonseca, J. Dweck, Characterization of carbonaceous products by TG and DTA. J. Therm. Anal. 49, 657–661 (1997). https://doi.org/10.1007/BF01996748

    Article  CAS  Google Scholar 

  34. S. Bose, T. Kuila, M.E. Uddin, N.H. Kim, A.K.T. Lau, J.H. Lee, In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. Polym. (Guildf). 51, 5921–5928 (2010). https://doi.org/10.1016/j.polymer.2010.10.014

    Article  CAS  Google Scholar 

  35. O.-K. Park, Y.-M. Choi, J.Y. Hwang, C.-M. Yang, T.-W. Kim, N.-H. You, H.Y. Koo, J.H. Lee, B.-C. Ku, M. Goh, Defect healing of reduced graphene oxide via intramolecular cross-dehydrogenative coupling. Nanotechnology. 24, 185604 (2013). https://doi.org/10.1088/0957-4484/24/18/185604

    Article  CAS  Google Scholar 

  36. Y. van de Burgt, E. Lubberman, E.J. Fuller, S.T. Keene, G.C. Faria, S. Agarwal, M.J. Marinella, A. Alec Talin, A. Salleo, A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017). https://doi.org/10.1038/nmat4856

    Article  CAS  Google Scholar 

  37. K.S. Chun, S. Husseinsyah, H. Osman, Mechanical and thermal properties of coconut shell powder filled polylactic acid biocomposites: effects of the filler content and silane coupling agent. J. Polym. Res. 19, 9859 (2012). https://doi.org/10.1007/s10965-012-9859-8

    Article  CAS  Google Scholar 

  38. H. Salmah, S.C. Koay, O. Hakimah, Surface modification of coconut shell powder filled polylactic acid biocomposites. J. Thermoplast Compos. Mater. 26, 809–819 (2012). https://doi.org/10.1177/0892705711429981

    Article  CAS  Google Scholar 

  39. K.S. Chun, S. Husseinsyah, H. Osman, Properties of coconut shell powder-filled polylactic acid ecocomposites: effect of maleic acid. Polym. Eng. Sci. 53, 1109–1116 (2013). https://doi.org/10.1002/pen.23359

    Article  CAS  Google Scholar 

  40. A. Thakur, S. Kumar, V.S. Rangra, Synthesis of reduced graphene oxide (rGO) via chemical reduction. AIP Conf. Proc. 1661, 80032 (2015). https://doi.org/10.1063/1.4915423

    Article  CAS  Google Scholar 

  41. T. Ding, L. Wang, P. Wang, Changes in electrical resistance of carbon-black-filled silicone rubber composite during compression. J. Polym. Sci. Part. B Polym. Phys. 45, 2700–2706 (2007). https://doi.org/10.1002/polb.21272

    Article  CAS  Google Scholar 

  42. A. Motaghi, A. Hrymak, G.H. Motlagh, Electrical conductivity and percolation threshold of hybrid carbon/polymer composites. J. Appl. Polym. Sci. (2015). https://doi.org/10.1002/app.41744

    Article  Google Scholar 

  43. R. Luo, H. Li, B. Du, S. Zhou, Y. Zhu, A simple strategy for high stretchable, flexible and conductive polymer films based on PEDOT:PSS-PDMS blends. Org. Electron. 76, 105451 (2020). https://doi.org/10.1016/j.orgel.2019.105451

    Article  CAS  Google Scholar 

  44. V. Maheshwari, R. Saraf, Tactile Devices to sense touch on a Par with a human finger, Angew. Chemie Int. Ed. 47, 7808–7826 (2008). https://doi.org/10.1002/anie.200703693

    Article  CAS  Google Scholar 

  45. P. Song, Y. Yu, T. Zhang, S. Fu, Z. Fang, Q. Wu, Permeability, viscoelasticity, and flammability performances and their relationship to polymer nanocomposites. Ind. Eng. Chem. Res. 51, 7255–7263 (2012). https://doi.org/10.1021/ie300311a

    Article  CAS  Google Scholar 

  46. C. Merlini, G.M. de Barra, T.M. Araujo, A. Pegoretti, The effect of compressive stress on the electrically resistivity of poly (vinylidene fluoride)/polypyrrole blends. Synth. Met 196, 186–192 (2014). https://doi.org/10.1016/j.synthmet.2014.08.002

    Article  CAS  Google Scholar 

  47. C. Merlini, G.M.O. Barra, T. Medeiros Araujo, A. Pegoretti, Electrically pressure sensitive poly(vinylidene fluoride)/polypyrrole electrospun mats. RSC Adv. 4, 15749–15758 (2014). https://doi.org/10.1039/C4RA01058B

    Article  CAS  Google Scholar 

  48. J.C. Grunlan, W.W. Gerberich, L.F. Francis, Electrical and mechanical behavior of carbon black–filled poly(vinyl acetate) latex–based composites. Polym. Eng. Sci. 41, 1947–1962 (2001). https://doi.org/10.1002/pen.10891

    Article  CAS  Google Scholar 

  49. H.-Q. Xie, C.-M. Liu, J.-S. Guo, Preparation of conductive polypyrrole composites by in-situ polymerization. Polym. Int. 48, 1099–1107 (1999). https://doi.org/10.1002/(SICI)1097-0126(199911)48:11

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. P. N. Lisboa Filho and Prof. V. F. Ximenes for FTIR measurements, Prof. C. R. Grandini for Scanning Electron Microscopy in the multiuser laboratory, and to Prof. G. Bannach and C. Gaglieri for TGA/DTG measurements and analysis in the Laboratory of Thermal Analysis.

Funding

This work was supported by FAPESP (Grant Nos. 2013/07296-2, 2017/20809-0, 2020/04721-8, 2021/03379-7, 2022/00410-3) and CAPES (Grant Nos. 88887.600230/2021-00).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by RAS, MHB and JVML. The first draft of the manuscript was written by RAS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rafael Aparecido da Silva.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 328.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, R.A., Boratto, M.H., Aguiar, R.R. et al. Effects of organic additives on film characteristics of flexible PEDOT:PSS/latex. J Mater Sci: Mater Electron 34, 1488 (2023). https://doi.org/10.1007/s10854-023-10911-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10911-y

Navigation