Skip to main content

Advertisement

Log in

Transient liquid phase infiltration bonding of copper using porous silver insert sheet

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A transient liquid-phase infiltration process was successfully applied to the bonding of Cu using a porous Ag insert sheet. Ag particles with a mean size of ϕ2 μm were sintered to form Ag sheets with a porosity of 24 vol%. The sintered Ag sheet had an open-cell structure, and the molten Sn–Ag–Cu solder infiltrated the pores through capillary action, bonding the Cu rods and Cu plates. The pores in the Ag sheet are completely filled with the infiltrated molten Sn alloy. The Ag skeleton dissolved in the molten Sn alloy and solidified isothermally to form Ag3Sn, which gradually closed the pores. A Cu–Sn intermetallic compound layer was formed at the interface between the bond layer and the base Cu. A sound joint with a high remelting point and shear strength of approximately 46 MPa was obtained with a short bond time and relatively low bonding pressure. As the Cu–Sn intermetallic compound layer grew, the joint strength decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data is available on request from the authors.

References

  1. R. Kisiel, Z. Szczepański, Microelectro. Reliab. 49, 627–629 (2009). https://doi.org/10.1016/j.microrel.2009.03.009

    Article  CAS  Google Scholar 

  2. V. Chidambaram, J. Hald, J. Hattel, J. Alloys Compd. 490, 170–179 (2010). https://doi.org/10.1016/j.jallcom.2009.10.108

    Article  CAS  Google Scholar 

  3. F.Q. Lang, H. Yamaguchi, H. Nakagawa, H. Sato, J. Mater. Sci. Technol. 31, 445–452 (2015). https://doi.org/10.1016/j.jmst.2014.10.010

    Article  CAS  Google Scholar 

  4. L. Fu, J. He, S. Lu, Y. Sun, D. Zhu, Y. Mao, J. Mater. Res. Technol. 17, 2134–2144 (2022). https://doi.org/10.1016/j.jmrt.2022.01.162

    Article  CAS  Google Scholar 

  5. A.N. Goldstein, C.M. Echer, A.P. Alivisatos, Science 256, 1425–1427 (1992). https://doi.org/10.1126/science.256.5062.1425

    Article  CAS  Google Scholar 

  6. G.L. Allen, R.A. Bayles, W.W. Gile, W.A. Jesser, Thin Solid Films 144, 297–308 (1986). https://doi.org/10.1016/0040-6090(86)90422-0

    Article  CAS  Google Scholar 

  7. E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Acta Mater. 53, 2385–2393 (2005). https://doi.org/10.1016/j.actamat.2005.01.047

    Article  CAS  Google Scholar 

  8. T. Ogura, M. Nishimura, H. Tatsumi, W. Takahara, A. Hirose, Mater. Trans. 53(12), 2085–2090 (2012). https://doi.org/10.2320/matertrans.MB201201

    Article  CAS  Google Scholar 

  9. Q. Xu, Y. Mei, X. Li, G.Q. Lu, J. Alloys Compd. 675, 317–324 (2016). https://doi.org/10.1016/j.jallcom.2016.03.133

    Article  CAS  Google Scholar 

  10. Y. Kobayashi, Y. Yasuda, T. Morita, J. Sci.: Adv. Mater. Devices. 1, 413–430 (2016). https://doi.org/10.1016/j.jsamd.2016.11.002

    Article  Google Scholar 

  11. H. Nishikawa, T. Hirano, T. Takemoto, N. Terada, Open Surf. Sci. J. 3, 60–64 (2011). https://doi.org/10.2174/1876531901103010060

    Article  CAS  Google Scholar 

  12. Y. Kobayashi, T. Shirochi, Y. Yasuda, T. Morita, Solid State Sci. 13, 553–558 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.12.025

    Article  CAS  Google Scholar 

  13. D.H. Jung, A. Sharma, M. Mayer, J.P. Jung, Rev. Adv. Mater. Sci. 53, 147–160 (2018). https://doi.org/10.1515/rams-2018-0011

    Article  CAS  Google Scholar 

  14. T. Fujimoto, S. Fukumoto, T. Miyazaki, Y. Kashiba, K. Shiotani, K. Fujimoto, J. Phys.: Conf. Ser. 379, 012026 (2012). https://doi.org/10.1088/1742-6596/379/1/012026

    Article  CAS  Google Scholar 

  15. B. Hosseinzaei, A.R.K. Rashid, Solder. Surf. Mt. Technol. 31(4), 221–226 (2019). https://doi.org/10.1108/SSMT-09-2018-0031

    Article  Google Scholar 

  16. S. Fukumoto, T. Miyazaki, M. Matsushima, K. Fujimoto, Mater. Trans. 57(6), 846–852 (2016). https://doi.org/10.2320/matertrans.MD201509

    Article  CAS  Google Scholar 

  17. A. Lis, C. Leinenbach, J. Electron. Mater. 44(11), 4576–4588 (2015). https://doi.org/10.1007/s11664-015-3982-3

    Article  CAS  Google Scholar 

  18. B.-S. Lee, S.-K. Hyun, J.-W. Yoon, J. Mater. Sci. Mater. Electron. 28, 7827–7833 (2017). https://doi.org/10.1007/s10854-017-6479-4

    Article  CAS  Google Scholar 

  19. H. Shao, A. Wu, Y. Bao, Y. Zhao, G. Zou, Mater. Sci. Eng. A 680, 221–231 (2017). https://doi.org/10.1016/j.msea.2016.10.092

    Article  CAS  Google Scholar 

  20. S. Fukumoto, K. Miyake, S. Tatara, M. Matsushima, K. Fujimoto, Mater. Trans. 56(7), 1019–1024 (2015). https://doi.org/10.2320/matertrans.MI201422

    Article  CAS  Google Scholar 

  21. A. A. Bajwa, Y. Y. Qin, R. Zeiser, J. Wilde, In CIPS 2014; 8th International Conference on Integrated Power Electronics Systems, (Nuremberg/Germany, 2014), pp. 25–27

  22. K.-H. Jung, K.D. Min, C.-J. Lee, S.-B. Jung, J. Alloys Compd. 781, 657–663 (2019). https://doi.org/10.1016/j.jallcom.2018.12.032

    Article  CAS  Google Scholar 

  23. A. Sharif, C.L. Gan, Z. Chen, J. Alloys Compd. 587, 365–368 (2014). https://doi.org/10.1016/j.jallcom.2013.10.204

    Article  CAS  Google Scholar 

  24. D. Zhang, S. Liu, Z. Chen, L. Liu, In 19th International Conference on Electronic Packaging Technology, (2018), pp. 593–598. DOI: https://doi.org/10.1109/ICEPT.2018.8480583

  25. F. Yu, C. Hang, M. Zhao, H. Chen, J. Alloys Compd. 776, 791–797 (2019). https://doi.org/10.1016/j.jallcom.2018.10.267

    Article  CAS  Google Scholar 

  26. T. Hu, H. Chen, M. Li, Mater. Des. 108, 383–390 (2016). https://doi.org/10.1016/j.matdes.2016.06.099

    Article  CAS  Google Scholar 

  27. M. Nakamoto, A. Fukuda, J. Pinkham, S. Vilakazi, H. Goto, R. Matsumoto, H. Utsunomiya, T. Tanaka, Mater. Trans. 57(6), 973–977 (2016). https://doi.org/10.2320/matertrans.M2015428

    Article  CAS  Google Scholar 

  28. H. Shao, A. Wu, Y. Bao, Y. Zhao, G. Zou, L. Liu, Mater. Sci. Eng. A 724, 231–238 (2018). https://doi.org/10.1016/j.msea.2018.03.097

    Article  CAS  Google Scholar 

  29. C. Hang, J. He, Z. Zhang, H. Chen, M. Li, Sci. Rep. 8, 17422 (2018). https://doi.org/10.1038/s41598-018-35708-6

    Article  CAS  Google Scholar 

  30. J. Liu, Z. Zheng, J. Wang, Y. Wu, W. Tang, J. Lü, J. Alloys Compd. 465, 239–243 (2008). https://doi.org/10.1016/j.jallcom.2007.10.055

    Article  CAS  Google Scholar 

  31. A. Yamaguchi, K. Gotoh, T. Tomita, S. Fukumoto, J. Jpn. Inst. Metals 75(12), 651–656 (2011). https://doi.org/10.2320/jinstmet.75.651

    Article  CAS  Google Scholar 

  32. J. Cai, T. Jin, J. Kou, S. Zou, J. Xiao, Q. Meng, Langmuir 37(5), 1623–1636 (2021). https://doi.org/10.1021/acs.langmuir.0c03134

    Article  CAS  Google Scholar 

  33. S. Fukumoto, T. Kizawa, M. Matsuhisma, H. Hokazono, K. Fujimoto, J. Smart Process. 6(5), 188–194 (2017). https://doi.org/10.7791/jspmee.6.188

    Article  CAS  Google Scholar 

  34. S. Kumar, J.P. Jung, Mater. Sci. Eng. B 178, 10–21 (2013). https://doi.org/10.1016/j.mseb.2012.10.003

    Article  CAS  Google Scholar 

  35. J. Glaze, J. Electron. Mater. 23(8), 693–699 (1994). https://doi.org/10.1007/BF02651361

    Article  Google Scholar 

  36. Y. Plevachuk, V. Sklyarchuk, W. Hoyer, I. Kaban, J. Mater. Sci. 41, 4632–4635 (2006). https://doi.org/10.1007/s10853-006-0053-4

    Article  CAS  Google Scholar 

  37. D. Hillman, R. Wilcoxon, T. Pearson, P. Mckenna, J. Electron. Mater. 48(8), 5241–5256 (2019). https://doi.org/10.1007/s11664-019-07316-1

    Article  CAS  Google Scholar 

  38. A. Lorenz, E. Sachs, S. Allen, L. Rafflenbeul, B. Kernan, Metall. Mater. Trans. A 35, 631–640 (2004). https://doi.org/10.1007/s11661-004-0375-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Shintaro Kuroiwa for his experimental assistance.

Funding

This work was supported by JSPS KAKENHI (Grant Number 21H01636).

Author information

Authors and Affiliations

Authors

Contributions

SF: Supervision, writing and review and editing, project administration. RY: Investigation, experimental, writing original draft. MM: Co-supervision and review.

Corresponding author

Correspondence to Shinji Fukumoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukumoto, S., Yagane, R. & Matsushima, M. Transient liquid phase infiltration bonding of copper using porous silver insert sheet. J Mater Sci: Mater Electron 34, 1485 (2023). https://doi.org/10.1007/s10854-023-10895-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10895-9

Navigation