Skip to main content

Advertisement

Log in

Transient liquid-phase infiltration bonding of copper using porous copper interlayer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A transient liquid-phase infiltration process was applied for the bonding of copper using a porous copper interlayer. Porous copper interlayers with porosities ranging from 13.7 to 22.2% and pore sizes ranging from 4.9 to 7.5 μm were fabricated via sintering of copper paste prepared from a mixture of copper particles and terpineol. Subsequently, molten Sn–Ag–Cu alloy was allowed to infiltrate the porous copper, indicating that the porous copper had an open-cell structure. A copper rod was then bonded to the copper plate through a porous copper interlayer via the infiltration of the Sn–Ag–Cu alloy at 523 K. The microstructure of the bonding layer constituted Cu–Sn intermetallic compounds (IMCs) formed by solid–liquid reaction diffusion and an initial Cu skeleton structure. The maximum shear joint strength of 35 MPa was obtained when the initial bonding interface between the copper rod and the porous interlayer was filled with thin Cu–Sn IMCs. This novel bonding process, using capillary pressure as the driving force, can realise the low-temperature and short-time bonding of copper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data is available on request from the authors.

References

  1. T. Funaki, J.C. Balada, J. Junhans, A.S. Kashyap, F.D. Barlow, H.A. Mantooth, T. Kimoto, T. Hikihara, SiC JEET DC characteristics under extremely high ambient temperatures. IEICE Electron. Express 1(17), 523–527 (2004). https://doi.org/10.1587/elex.1.523

    Article  Google Scholar 

  2. K. Suganuma, S.-J. Kim, K.-S. Kim, High-temperature lead-free solders: properties and possibilities. JOM 61, 64–71 (2009). https://doi.org/10.1007/s11837-009-0013-y

    Article  CAS  Google Scholar 

  3. G. Zeng, S. McDonald, K. Nogita, Development of high-temperature solders: review. Microelectron. Reliab. 52, 1306–1322 (2012). https://doi.org/10.1016/j.microrel.2012.02.018

    Article  CAS  Google Scholar 

  4. A. Hirose, Low temperature sintering bonding using Ag nanoparticles and Ag2O particles. J. Jpn. Weld. Soc. 80(8), 702–708 (2011). https://doi.org/10.2207/jjws.80.702

    Article  CAS  Google Scholar 

  5. E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Metal-metal bonding process using Ag metal-organic nanoparticles. Acta Mater. 53, 2385–2393 (2005). https://doi.org/10.1016/j.actamat.2005.01.047

    Article  ADS  CAS  Google Scholar 

  6. M. Nakamoto, T. Nagaoka, Y. Morisada, M. Fukusumi, Y. Kashiwagi, M. Yamamoto, Low temperature bonding process using Cu nanoparticles and mixed Ag-Cu nanoparticles. J. Jpn. Inst. Electron. Packag. 13(7), 536–542 (2010). https://doi.org/10.5104/jiep.13.536

    Article  CAS  Google Scholar 

  7. W.D. MacDonald, T.W. Eager, Transient liquid phase bonding. Annu. Rev. Mater. Sci. 22, 23–46 (1992). https://doi.org/10.1146/annurev.ms.22.080192.000323

    Article  ADS  CAS  Google Scholar 

  8. S. Fukumoto, K. Miyake, S. Tanaka, M. Matsushima, K. Fujimoto, Solid-liquid interdiffusion bonding of copper using Ag-Sn layered films. Mater. Trans. 56(7), 1019–1024 (2015). https://doi.org/10.2320/matertrans.MI201422

    Article  CAS  Google Scholar 

  9. L. Sun, M. Chen, L. Zhang, Microstructure evolution and grain orientation of IMC in Cu-Sn TLP bonding solder joints. J. Alloys Compd. 786, 677–687 (2019). https://doi.org/10.1016/j.jallcom.2019.01.384

    Article  CAS  Google Scholar 

  10. Y. Bao, A. Wu, H. Shao, Y. Zhao, G. Zou, Effect of powders on microstructures and mechanical properties for Sn-Ag transient liquid phase bonding in air. J. Mater. Sci. 29, 10246–10257 (2018). https://doi.org/10.1007/s10854-018-9076-2

    Article  CAS  Google Scholar 

  11. T. Funamoto, H. Wachi, R. Kajiwara, M. Kato, T. Matsuzaka, T. Shida, Liquid phase diffusion welding of copper to austenitic stainless steel using Cu-Ti thin alloyed layer deposited by sputtering. J. Jpn. Weld. Soc. 6(2), 219–225 (1988). https://doi.org/10.2207/qjjws.6.219

    Article  CAS  Google Scholar 

  12. H. Shao, A. Wu, Y. Bao, Y. Zhao, G. Zou, L. Liu, Microstructure evolution and mechanical properties of Cu/Sn/Ag TLP-bonded joint during thermal aging. Mater Charact 144, 469–478 (2018). https://doi.org/10.1016/j.matchar.2018.07.041

    Article  CAS  Google Scholar 

  13. H. Shao, A. Wu, Y. Bao, Y. Zhao, G. Zou, L. Liu, Novel transient liquid phase bonding through capillary action for high-temperature power devices packaging. Mater. Sci. Eng. A 724, 231–238 (2018)

    Article  CAS  Google Scholar 

  14. J. Yeon, T. Kagiyama, R. Yamada, P. Ni, M. Nakamoto, T. Tanaka, Dissimilar metal joining of Cu and Fe using super-spread wetting into surface fine crevice structures. Mater. Trans. 61(10), 1900–1906 (2020). https://doi.org/10.2320/matertrans.MT-M2020120

    Article  CAS  Google Scholar 

  15. S. Fukumoto, R. Yagane, M. Matsushima, Transient liquid phase infiltration bonding of copper using porous silver insert sheet. J. Mater. Sci. 34, 1485 (2023). https://doi.org/10.1007/s10854-023-10895-9

    Article  CAS  Google Scholar 

  16. M. Yokota, A. Hara, M. Ohata, H. Mitani, Some considerations on the process of penetration of liquids into porous bodies. J. Jpn. Particles Particles Metall. Soc. 26(8), 283–288 (1979). https://doi.org/10.2497/jjspm.26.283

    Article  CAS  Google Scholar 

  17. G. Humpston, D. M. Jacobson. Principles of soldering. ASM Int. (2004). https://doi.org/10.31399/asm.tb.ps.9781627083522

  18. T. Matsumoto, K. Nogi, Wetting in soldering and microelectronics. Annu. Rev. Mater. Res. 38, 251–273 (2008). https://doi.org/10.1146/annurev.matsci.38.060407.132448

    Article  ADS  CAS  Google Scholar 

  19. R.R.A. Syms, E.M. Yeatman, V.M. Bright, G.M. Whitesides, Surface tension-powered self-assembly of microstructures-the state-of-the-art. J. Microelectromech. Syst. 12(4), 387–417 (2003). https://doi.org/10.1109/JMEMS.2003.811724

    Article  Google Scholar 

  20. D. Hillman, R. Wilcoxon, T. Pearson, P. Mckenna, Dissolution rate of electronics packaging surface finish elements in Sn3.0Ag0.5Cu solder. J. Electron. Mater. 48(8), 5241–5256 (2019). https://doi.org/10.1007/s11664-019-07316-1

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Shintaro Kuroiwa and Yosuke Masuda of Osaka University for their assistance with experiments.

Funding

This work was supported by JSPS KAKENHI (Grant Number 21H01636).

Author information

Authors and Affiliations

Authors

Contributions

RM: Investigation, experiment, and writing. RY: Investigation, experiment. MM: Co-supervision and review. SF: Supervision, review and editing, project administration.

Corresponding author

Correspondence to Shinji Fukumoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyajima, R., Yagane, R., Matsushima, M. et al. Transient liquid-phase infiltration bonding of copper using porous copper interlayer. J Mater Sci: Mater Electron 35, 344 (2024). https://doi.org/10.1007/s10854-024-12116-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12116-3

Navigation