Skip to main content
Log in

Hydrothermally synthesized cobalt oxide embedded polymer nanocomposites as efficient electrode material for asymmetric supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cobalt oxide (Co3O4) nanoparticles (NPs) have been successfully synthesized by the hydrothermal method and the solution cast method used to prepare poly(vinyl alcohol)(PVA)/poly(vinyl pyrolidone) (PVP) with various weight percentages of Co3O4 polymer nanocomposites (PNCs). Structural and functional groups have been confirmed by powder XRD and FTIR spectral analyses. The surface morphological view of all the polymer nanocomposites has been investigated by FE-SEM analysis. The prepared PNCs have been examined by AC electrical conductivity, dielectric loss and dielectric constant studies. Also, the dielectric constant is high for PVA/PVP/1 wt% Co3O4 PNCs. Electrochemical properties have been studied for fabricated asymmetric supercapacitor (AC//PNC) device examined by using two-electrode system. The fabricated asymmetric supercapacitor device displayed an outstanding specific capacity retention of 89.75% after 5000 cycles and the Coulombic efficiency values reached over 99.45%. The prepared 1 wt% Co3O4 dispersed PVA/PVP composite has exhibited very low Rs and Rct values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing not applicable.

References

  1. A. González, E.A. Goikolea, J.A. Barrena, R. Mysyk, Renew Sust. Energy Rev. 58, 1189–1206 (2016). https://doi.org/10.1016/j.rser.2015.12.249

    Article  CAS  Google Scholar 

  2. Q. Xiang, J Mater Chem. 5, 9907–9916 (2017). https://doi.org/10.1039/C7TA00234C

    Article  CAS  Google Scholar 

  3. T.H. Kim, G.K. Veerasubramani, S.J. Kim, J Ind Eng Chem 61, 181–187 (2018). https://doi.org/10.1016/j.jiec.2017.12.015

    Article  CAS  Google Scholar 

  4. Z. Shao, H. Li, M. Li, C. Li, C. Qu, B. Yang, Energy 87(2015), 578–585 (2015). https://doi.org/10.1016/j.energy.2015.05.025

    Article  CAS  Google Scholar 

  5. P. Siwatch, K. Sharma, N. Manyani, J. Kang, S.K. Tripathi, J. Alloys Compd. 872, 159409 (2021). https://doi.org/10.1016/j.jallcom.2021.159409

    Article  CAS  Google Scholar 

  6. S. Mallakpour, S. Mansourzadeh, Ultrason Sonochem. 43, 91–100 (2018). https://doi.org/10.1016/j.ultsonch.2017.12.052

    Article  CAS  Google Scholar 

  7. V. Siva, D. Vanitha, A. Murugan, A. Shameem, S. Asath Bahadur, Compos Commun. 23, 100597 (2021). https://doi.org/10.1016/j.coco.2020.100597

    Article  Google Scholar 

  8. K. Rajesh, V. Crasta, N.B. Rithin Kumar, J. Polym. Res. 26, 99 (2019). https://doi.org/10.1007/s10965-019-1762-0

    Article  CAS  Google Scholar 

  9. M. Amirul Aizat Mohd Abdah, N.H. Nabilah Azman, S. Kulandaivalu, Y. Sulaiman, Mater. Design 186, 108199 (2020). https://doi.org/10.1016/j.matdes.2019.108199

    Article  CAS  Google Scholar 

  10. P.H. Patil, V.V. Kulkarni, S.A. Jadhav, J. Compos. Sci. 6, 363 (2022). https://doi.org/10.3390/jcs6120363

    Article  CAS  Google Scholar 

  11. M.I. Mohammed, Opt. Mater. 133, 112916 (2022). https://doi.org/10.1016/j.optmat.2022.112916

    Article  CAS  Google Scholar 

  12. K. Jeyabanu, K. Sundaramahalingam, P. Devendran, A. Manikandan, N. Nallamuthu, Physica B 572, 129–138 (2019). https://doi.org/10.1016/j.physb.2019.07.049

    Article  CAS  Google Scholar 

  13. V. Siva, A. Murugan, A. Shameem, S. Thangarasu, S. Asath Bahadur, J. Energy Storage 48, 103965 (2022). https://doi.org/10.1016/j.est.2022.103965

    Article  Google Scholar 

  14. S. Choudhary, R.J. Sengwa, Curr. Appl. Phys. 18, 1041–1058 (2018). https://doi.org/10.1016/j.cap.2018.05.023

    Article  Google Scholar 

  15. A.M. El Sayed, S. El-Gamal, J. Polym. Res. 22, 1–12 (2015). https://doi.org/10.1007/s10965-015-0732-4

    Article  CAS  Google Scholar 

  16. C.I. Priyadharsini, G. Marimuthu, T. Pazhanivel, P.M. Anbarasan, V. Siva, L. Mohana, J. Sol Gel Sci. Tech. 96, 416–422 (2020). https://doi.org/10.1007/s10971-020-05393-x

    Article  CAS  Google Scholar 

  17. P. Vishnukumar, B. Saravanakumar, G. Ravi, V. Ganesh, R.K. Guduru, R. Yuvakkumar, Mater. Lett. 219, 114–118 (2018). https://doi.org/10.1016/j.matlet.2018.02.084

    Article  CAS  Google Scholar 

  18. M.S. Yadav, S.K. Tripathi, Ionics 23, 2919–2930 (2017). https://doi.org/10.1007/s11581-017-2026-9

    Article  CAS  Google Scholar 

  19. M. Mayakkannan, A. Murugan, A. Shameem, V. Siva, S. Sasikumar, S. Thangarasu, S. Asath Bahadur, J. Energy Storage 44, 103257 (2021). https://doi.org/10.1016/j.est.2021.103257

    Article  Google Scholar 

  20. X. Yang, K. Xu, R. Zou, J. Hu, Nanomicro Lett. 8, 143–150 (2016)

    Google Scholar 

  21. D. GuO, M. Zhang, Z. Chen, X. Liu, Mater. Res. Bull. 96, 463–470 (2017). https://doi.org/10.1016/j.materresbull.2017.05.048

    Article  CAS  Google Scholar 

  22. D. Guo, M. Zhang, Z. Chen, X. Liu, RSC Adv. 8, 33374–33382 (2018). https://doi.org/10.1039/C8RA07032F

    Article  CAS  Google Scholar 

  23. Y. Lin, H. Ji, Z. Shen, J. Mater. Sci. Mater. Electron. 27, 2086–2095 (2016). https://doi.org/10.1007/s10854-015-3995-y

    Article  CAS  Google Scholar 

  24. H. Liang, J.M. Raitano, L. Zhang, S.W. Chan, Chem. Commun. 28, 7569–7571 (2009). https://doi.org/10.1039/B914447A

    Article  Google Scholar 

  25. W.M.T. Ramya, V. Siva, A. Murugan et al., A novel biodegradable polymer-based hybrid nanocomposites for flexible energy storage systems. J Polym Environ (2022). https://doi.org/10.1007/s10924-022-02695-9

    Article  Google Scholar 

  26. E.M. Abdelrazek, I.S. Elashmawi, A. El-khodary, A. Yassin, Curr. Appl. Physics. 10, 607–613 (2010). https://doi.org/10.1016/j.cap.2009.08.005

    Article  Google Scholar 

  27. S. Choudhary, R.J. Sengwa, Electro Chim. Acta 247, 924–941 (2017). https://doi.org/10.1016/j.electacta.2017.07.051

    Article  CAS  Google Scholar 

  28. V. Siva, A. Shameem, A. Murugan, M. Anandhajothi, S. Athimoolam, S. Asath Bahadur, J. Mater. Sci. Mater. Electron. 31, 17921–179 (2020). https://doi.org/10.1007/s10854-020-04344-0

    Article  CAS  Google Scholar 

  29. S. Choudhary, R.J. Sengwa, J. Inorg Organomet Polym. Mater. 29, 592–607 (2019). https://doi.org/10.1007/s10904-018-1034-1

    Article  CAS  Google Scholar 

  30. K. Jeyabanu, V. Siva, N. Nallamuthu, S. Selvanayagam, S. Asath Bahadur, A. Manikandan, J. Nanosci. Nanotechnol. 18, 1103–1109 (2018). https://doi.org/10.1166/jnn.2018.13969

    Article  CAS  Google Scholar 

  31. C.V. Subba Reddy, A.K. Sharma, V.V.R. Narasimha Rao, Polymer. 47, 1318–1323 (2006). https://doi.org/10.1016/j.polymer.2005.12.052

    Article  CAS  Google Scholar 

  32. A. Shameem, P. Devendran, V. Siva, A. Murugan, S. Sasikumar, N. Nallamuthu, S. Hussain, S. Asath Bahadur, Solid State Sci. 106, 106303 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106303

    Article  CAS  Google Scholar 

  33. A. Murugan, V. Siva, A. Shameem, S. Asath Bahadur, J. Energy Storage 44, 103423 (2021). https://doi.org/10.1016/j.est.2021.103423

    Article  Google Scholar 

  34. V. Veeramani, R. Madhu, S.M. Chen, M. Sivakumar, ACS Sustain Chem. Eng. 4, 5013–5020 (2016). https://doi.org/10.1021/acssuschemeng.6b01391

    Article  CAS  Google Scholar 

  35. V. Siva, A. Murugan, A. Shameem, J. Mater. Sci. Mater. Electron. 31, 20472–20484 (2020). https://doi.org/10.1007/s10854-020-04566-2

    Article  CAS  Google Scholar 

  36. X. Yuan, X. Yan, C. Zhou, D. Wang, Y. Zhu, J. Wang, X. Tao, X. Cheng, Ceram. Int. 46, 19981–19989 (2020). https://doi.org/10.1016/j.ceramint.2020.05.066

    Article  CAS  Google Scholar 

  37. D. Arthisree, W. Madhuri, Int. J. Hydrog. Energy 45, 9317–9327 (2020). https://doi.org/10.1016/j.ijhydene.2020.01.179

    Article  CAS  Google Scholar 

  38. D.B. Malavekar, C. Vaibhav Lokhande, V.J. Mane, S.B. Ubale, U.M. Patil, C.D. Lokhande, J. Phys. Chem. Solid. 141, 109425 (2020). https://doi.org/10.1016/j.jpcs.2020.109425

    Article  CAS  Google Scholar 

  39. R. Kumar, S.M. Youssry, H.M. Soe, M.M. Abdel-Galeil, G. Kawamura, A. Matsuda, J. Energy Storage. 30, 101539 (2020). https://doi.org/10.1016/j.est.2020.101539

    Article  Google Scholar 

  40. M. Khalaj, A. Sedghi, H.N. Miankushki, S.Z. Golkhatmi, Energy 188, 116088 (2019). https://doi.org/10.1016/j.energy.2019.116088

    Article  CAS  Google Scholar 

  41. T. Alamro, M.K. Ram, Electrochim. Acta 235, 623–631 (2017). https://doi.org/10.1016/j.electacta.2017.03.102

    Article  CAS  Google Scholar 

  42. H. Gul, Nanomaterials 10, 118 (2020). https://doi.org/10.3390/nano10010118

    Article  CAS  Google Scholar 

  43. M. Amirul, A. MohdAbdah, N. AbdulRahman, Y. Sulaiman, Electrochimica Acta 259, 466–473 (2018). https://doi.org/10.1016/j.electacta.2017.11.005

    Article  CAS  Google Scholar 

  44. M. Nallappan, M. Gopalan, Mater. Res. Bul. 106, 357–364 (2018). https://doi.org/10.1016/j.materresbull.2018.05.025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the author V. S is thankful to the management of Karpagam Academy of Higher Education, Coimbatore, India for their support.

Author information

Authors and Affiliations

Authors

Contributions

PM—Original draft Writing; AM—Formal analysis; VS—Conceptualization; AS—Formal analysis; SAB—Validation; and ST—Supervision.

Corresponding authors

Correspondence to V. Siva or S. Thangarasu.

Ethics declarations

Competing interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthumari, P., Siva, V., Murugan, A. et al. Hydrothermally synthesized cobalt oxide embedded polymer nanocomposites as efficient electrode material for asymmetric supercapacitors. J Mater Sci: Mater Electron 34, 1491 (2023). https://doi.org/10.1007/s10854-023-10883-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10883-z

Navigation