Skip to main content
Log in

Impact of Sb/Ag co-doping on SnO2’s optical, transport, and crystallographic properties for optoelectronic devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Over the years, scientists were consistently searching for novel oxide materials that can be employed in optoelectronic and spintronic devices. In this work, we have explored the structural, optical and transport features of Sn0.94Ag0.06−ySbyO2 (0 ≤ y ≤ 0.06) compounds for their potential use in optoelectronics devices. The measurement and analyses of the X-ray diffraction patterns confirmed that these samples are crystallised in a single phase of tetragonal rutile structure, though the changes in the lattice parameters were observed to be nominal. Raman spectroscopy analysis of these samples has further supported the formation of tetragonal rutile phase of SnO2 and successful incorporation of Ag/Sb ions in SnO2. According to the SEM microstructural study, the sample morphology is homogeneous, and the average grain size falls somewhere in the 50–60 nm range. The elemental color mapping that is performed by energy dispersive spectroscopy reveals that all the elements are distributed consistently across the prepared samples. According to XPS analysis, Sn resided in the multiple valence states, whereas Sb and Ag was in +3 and +1 state respectively. The optical properties measurements such as absorbance and transmittance using a UV–Vis spectrophotometer reveal the optical band gap narrowing while enhancing the Sb/Ag co-doping concentrations. Further, it was observed that the increase in the amount of Sb co-doping concentration causes a rise in the transmittance value from 86 to 88%. According to the Hall effect investigation, all Ag/Sb co-doped SnO2 samples exhibits p-type behaviour, and overall carrier concentrations was found to decrease with increases of co-doping percentage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available within the article.

References

  1. L. Chouhan, S.K. Srivastava, A comprehensive review on recent advancements in d0 ferromagnetic oxide materials. Mater. Sci. Semiconduct. Process. 147, 106768 (2022). https://doi.org/10.1016/j.mssp.2022.106768

    Article  CAS  Google Scholar 

  2. Tomasz, Dietl, A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965 (2010). https://doi.org/10.1038/nmat2898

    Article  CAS  Google Scholar 

  3. H. Saadaoui, X. Luo, Z. Salman, X.Y. Cui, N.N. Bao, P. Bao, R.K. Zheng, L.T. Tseng, Y.H. Du, T. Prokscha, A. Suter, T. Liu, Y.R. Wang, S. Li, J. Ding, S.P. Ringer, E. Morenzoni, J.B. Yi, Intrinsic ferromagnetism in the diluted magnetic semiconductor Co:TiO2. Phys. Rev. Lett. 117, 227202 (2016). https://doi.org/10.1103/PhysRevLett.117.227202

    Article  CAS  Google Scholar 

  4. Y. Yamada, K. Ueno, T. Fukumura, H.T. Yuan, H. Shimotani, Y. Iwasa, L. Gu, S. Tsukimoto, Y. Ikuhara, M. Kawasaki, Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science 332, 1065 (2011). https://doi.org/10.1126/science.1202152

    Article  CAS  Google Scholar 

  5. N.H. Hong, J. Sakai, W. Prellier, Distribution of dopant in Fe:TiO2 and ni:TiO2 thin films. J. Magn. Magn. Mater. 281, 347 (2004). https://doi.org/10.1016/j.jmmm.2004.04.125

    Article  CAS  Google Scholar 

  6. N.H. Hong, J. Sakai, W. Prellier, A. Hassini, Co distribution in ferromagnetic rutile co-doped TiO2 thin films grown by laser ablation on silicon substrates. Appl. Phys. Lett. 83, 3129 (2003). https://doi.org/10.1063/1.1619227

    Article  CAS  Google Scholar 

  7. S.R. Shinde, S.B. Ogale, J.S. Higgins, H. Zheng, A.J. Millis, V.N. Kulkarni, R. Ramesh, R.L. Greene, T. Venkatesan, Co-occurrence of superparamagnetism and anomalous Hall effect in highly reduced cobalt-doped rutile TiO2-δ films. Phys. Rev. Lett. 92, 166601 (2004). https://doi.org/10.1103/PhysRevLett.92.166601

    Article  CAS  Google Scholar 

  8. S. Zhou, K. Potzger, J. von Borany, R. Gr¨otzschel, W. Skorupa, M. Helm, J. Fassbender, Crystallographically oriented Co and Ni nanocrystals inside ZnO formed by ion implantation and postannealing. Phys. Rev. B 77, 035209 (2008). https://doi.org/10.1103/PhysRevB.77.035209

    Article  CAS  Google Scholar 

  9. X.Y. Cui, J.E. Medvedeva, B. Delley, A.J. Freeman, N. Newman, C. Stampfl, Role of embedded clustering in dilute magnetic semiconductors: Cr doped GaN. Phys. Rev. Lett. 95, 256404 (2005). https://doi.org/10.1103/PhysRevLett.95.256404

    Article  CAS  Google Scholar 

  10. N.H. Hong, N. Poirot, J. Sakai, Ferromagnetism observed in pristine SnO2 thin films. Phys. Rev. B 77, 033205 (2008). https://doi.org/10.1103/PhysRevB.77.033205

    Article  CAS  Google Scholar 

  11. J.-H. Nguyen Hoa Hong, A.T. Song, T. Raghavender, Asaeda, M. Kurisu, Ferromagnetism in C-doped SnO2 thin films. Appl. Phys. Lett. 99, 052505 (2011). https://doi.org/10.1063/1.3617439

    Article  CAS  Google Scholar 

  12. P. Wu, B.Z. Zhou, W. Zhou, Room-temperature ferromagnetism in epitaxial Mg- doped SnO2 thin films. Appl. Phys. Lett. 100, 182405 (2012). https://doi.org/10.1063/1.4711220

    Article  CAS  Google Scholar 

  13. V.B. Kamble, S.V. Bhat, A.M. Umarji, Investigating thermal stability of structural defects and its effect on d0 ferromagnetism in undoped SnO2. J. Appl. Phys. 113, 244307 (2013)

    Article  CAS  Google Scholar 

  14. J. Xiaofang Liu, Z. Iqbal, B. Wu, He, R. Yu, Structure and room-temperature ferromagnetism of Zn-doped SnO2 nanorods prepared by solvothermal method. J. Phys. Chem. C 114, 4790 (2014). https://doi.org/10.1021/jp909178x

    Article  CAS  Google Scholar 

  15. S.K. Srivastava, P. Lejay, B. Barbara, S. Pailhès, V. Madigou, G. Bouzerar, Possible room-temperature ferromagnetism in K-doped SnO2: X-ray diffraction and high-resolution transmission electron microscopy study. Phys. Rev. B 82, 193203 (2010). https://doi.org/10.1103/PhysRevB.82.193203

    Article  CAS  Google Scholar 

  16. S.K. Srivastava, P. Lejay, A. Hadj-Azzem, G. Bouzerar, Non-magnetic impurity induced magnetism in Li-Doped SnO2 nanoparticles. J. Supercond. Nov. Magn. 27, 487 (2014). https://doi.org/10.1007/s10948-013-2287-0

    Article  CAS  Google Scholar 

  17. L. Chouhan, S.K. Panda, S. Bhattacharjee, B. Das, A. Mondal, B.N. Parida, R. Brahma, M.K. Manglam, M. Kar, G. Bouzerar, S.K. Srivastava, Room temperature d0 ferromagnetism, zero dielectric loss and ac-conductivity enhancement in p-type Ag-doped SnO2 compounds. J. Alloys Compd. 870, 159515 (2021). https://doi.org/10.1016/j.jallcom.2021.159515

    Article  CAS  Google Scholar 

  18. Jorge Osorio-Guillén, S. Lany, A. Zunger, Atomic control of conductivity versus ferromagnetism in wide-gap oxides via selective doping: V, Nb, Ta in Anatase TiO 2. Phys. Rev. Lett. 100, 036601 (2008). https://doi.org/10.1103/PhysRevLett.100.036601

    Article  CAS  Google Scholar 

  19. J.G. Tao, L.X. Guan, J.S. Pan, C.H.A. Huan, L. Wang, J.L. Kuo, Possible room temperature ferromagnetism of Li-doped anatase TiO2: a first-principles study. Phys. Lett. 374, 4451 (2010). https://doi.org/10.1016/j.physleta.2010.08.074

    Article  CAS  Google Scholar 

  20. M. Venkatesan, C.B. Fitzgerald, J.M.D. Coey, Unexpected magnetism in a dielectric oxide. Nature. 430, 630 (2004). https://doi.org/10.1038/430630a

    Article  CAS  Google Scholar 

  21. T. Kaneko, T. Ohno, First-principles study of graphene under c-HfO 2 (111) layers: electronic structures and transport properties. Appl. Phys. Lett. 109, 083105 (2016). https://doi.org/10.1063/1.4961112

    Article  CAS  Google Scholar 

  22. N. Hadacek, A. Nosov, L. Ranno, P. Strobel, R.-M. Galéra, Magnetic properties of HfO2 thin films. J. Phys. 19, 486206 (2007). https://doi.org/10.1088/0953-8984/19/48/486206

    Article  CAS  Google Scholar 

  23. J. Osorio-Guillen, S. Lany, S.V. Barabash, A. Zunger, Magnetism without magnetic ions: percolation, exchange, and formation energies of magnetism-promoting intrinsic defects in CaO. Phys. Rev. Lett. 96, 107203 (2006). https://doi.org/10.1103/PhysRevLett.96.107203

    Article  CAS  Google Scholar 

  24. K. Santa Chawla, Jayanthi, R.K. Kotnala, Room-temperature ferromagnetism in Li-doped p-type luminescent ZnO nanorods. Phys. Rev. B 79, 125204 (2009). https://doi.org/10.1103/PhysRevB.79.125204

    Article  CAS  Google Scholar 

  25. B. Qi, S. Ólafsson, H.P. Gíslason, Vacancy defect-induced d0 ferromagnetism in undoped ZnO nanostructures: controversial origin and challenges. Prog. Mater. Sci. 90, 45 (2017). https://doi.org/10.1016/j.pmatsci.2017.07.002

    Article  CAS  Google Scholar 

  26. L.-H. Ye, A.J. Freeman, B. Delley, Half-metallic ferromagnetism in Cu-doped ZnO: density functional calculations. Phys. Rev. B 73, 033203 (2006). https://doi.org/10.1103/PhysRevB.73.033203

    Article  CAS  Google Scholar 

  27. H. Pan, J.B. Yi, L. Shen, R.Q. Wu, J.H. Yang, J.Y. Lin, Y.P. Feng, J. Ding, J.H. Van Yin, Room-temperature ferromagnetism in carbon-doped ZnO. Phys. Rev. Lett. 99, 127201 (2007). https://doi.org/10.1103/PhysRevLett.99.127201

    Article  CAS  Google Scholar 

  28. L. Chouhan, G. Bouzerar, Srivastava, d0 ferromagnetism in Ag-doped Monoclinic ZrO2 compounds. J. Mater. Sci. 182, 109716 (2020). https://doi.org/10.1016/j.vacuum.2020.109716

    Article  CAS  Google Scholar 

  29. F. Maca, J. Kudrnovsky, V. Drchal, G. Bouzerar, Magnetism without magnetic impurities in ZrO2 oxide. Appl. Phys. Lett. 92, 212503 (2008). https://doi.org/10.1063/1.2936858

    Article  CAS  Google Scholar 

  30. G.S. Chang, J. Forrest, E.Z. Kurmaev, A.N. Morozovska, M.D. Glinchuk, J.A. McLeod, A. Moewes, T.P. Surkova, N.H. Hong, Oxygen-vacancy-induced ferromagnetism in undoped SnO2 thin films. Phys. Rev. B 85, 165319 (2012). https://doi.org/10.1103/PhysRevB.85.165319

    Article  CAS  Google Scholar 

  31. C. Zhang, S. Yan, First-principles study on ferromagnetism in Mg-doped SnO2. Appl. Phys. Lett. 95, 232108 (2009). https://doi.org/10.1063/1.3272674

    Article  CAS  Google Scholar 

  32. W.-Z. Xiao, L.-L. Wang, L. Xu, X.-F. Li, H.-Q. Deng, First-principles study of magnetic properties in Ag-doped SnO2. Phys. Status Solidi B 248, 1961 (2011). https://doi.org/10.1002/pssb.201046567

    Article  CAS  Google Scholar 

  33. G. Rahman, N.U. Din, V.M. García-Su´arez, E. Kan, Stabilizing intrinsic defects in SnO2. Phys. Rev. B 87, 205205 (2013). https://doi.org/10.1103/PhysRevB.87.205205

    Article  CAS  Google Scholar 

  34. W. Zhou, L. Liu, P. Wu, Nonmagnetic impurities induced magnetism in SnO2. J. Magn. Magn. Mater. 321, 3356 (2009). https://doi.org/10.1016/j.jmmm.2009.06.016

    Article  CAS  Google Scholar 

  35. I.M. Costa, Y.N. Colmenares, P.S. Pizani, E.R. Leite, A.J. Chiquito, Sb doping of VLS synthesized SnO2 nanowires probed by Raman and XPS spectroscopy. Chem. Phys. Lett. 695, 125 (2018). https://doi.org/10.1016/j.cplett.2018.02.014

    Article  CAS  Google Scholar 

  36. H.A. Shittu, O. Adedokun, M.A. Kareem, P. Sivaprakash, I.T. Bello, S. Arumugam, Effect of low-doping concentration on silver-doped SnO2 and its photocatalytic applications. Biointerface Res. Appl. Chem. 13, 165 (2023). https://doi.org/10.33263/BRIAC132.165

    Article  CAS  Google Scholar 

  37. T. Ali, A. Ahmed, U. Alam, I. Uddin, P. Tripathi, M. Muneer, Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light. Mater. Chem. Phys. 212, 325 (2018). https://doi.org/10.1016/j.matchemphys.2018.03.052

    Article  CAS  Google Scholar 

  38. M. Parthibavarman, S. Sathishkumar, M. Jayashree, R. BoopathiRaja, Microwave assisted synthesis of pure and Ag Doped SnO2 quantum dots as novel platform for high photocatalytic activity performance. J. Cluster Sci. 30, 351 (2019). https://doi.org/10.1007/s10876-018-01493-5

    Article  CAS  Google Scholar 

  39. R. Khan, F. Ming-Hu, Dielectric and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles. Chin. Phys. B 24, 127803 (2015). https://doi.org/10.1088/1674-1056/24/12/127803

    Article  CAS  Google Scholar 

  40. A. Naseem, S. Khan, Effect of (Mn-Co) co-doping on the structural, morphological, optical, photoluminescence and electrical properties of SnO2. J. Alloys Compd. 720, 502 (2017). https://doi.org/10.1016/j.jallcom.2017.05.293

    Article  CAS  Google Scholar 

  41. M. Aditya Sharma, S. Varshney, K.D.V. Kumar, R. Kumar, Magnetic properties of Fe and Ni doped SnO2 nanoparticles. Nanomater. Nanotechnol. 1, 29 (2011). https://doi.org/10.5772/50948

    Article  Google Scholar 

  42. S.K. Srivastava, R. Brahma, S. Datta, S. Guha, S.S. Aakansha, B. Baro, D.R. Narzary, M. Basumatary, S. Kar, Ravi, Effect of (Ni-Ag) co-doping on crystal structure and magnetic Property of SnO2. Mater. Res. Express. 6, 126107 (2019)

    Article  CAS  Google Scholar 

  43. S.K. Srivastava, S.S. Aakansha, B. Baro, D.R. Narzary, R. Basumatary, S. Brahma, Ravi, Crystal structure and magnetic properties of (Co-Ag) co-doped SnO2 compounds. J. Supercond. Nov. Magn. 34, 461 (2021). https://doi.org/10.1007/s10948-020-05676-y

    Article  CAS  Google Scholar 

  44. R. Narzary, B. Dey, L. Chouhan, S. Kumar, S. Ravi, S.K. Srivastava, Optical band gap tuning, zero dielectric loss and room temperature ferromagnetism in (Ag/Mg) co-doped SnO2 compounds for spintronics applications. Mater. Sci. Semicond. Process. 142(2022)

    Article  CAS  Google Scholar 

  45. S. Jun Okabayashi, Magnetic and electronic properties of Fe and Ni codoped SnO2. J. Appl. Phys. 112, 073917 (2012). https://doi.org/10.1063/1.4754454

    Article  CAS  Google Scholar 

  46. P. Venkateswara Reddy, S. Venkatramana Reddy, N. Koteeswara, Reddy, Magnetic properties of (Co, Al) co-doped SnO2 nanoparticles. J. Mater. Sci. 28, 13320 (2017). https://doi.org/10.1007/s10854-017-7168-z

    Article  CAS  Google Scholar 

  47. R. Narzary, B. Dey, S.N. Rout et al., Influence of K/Mg co-doping in tuning room temperature d0 ferromagnetism, optical and transport properties of ZnO compounds for spintronics applications. J. Alloys Compd. 934, 167874 (2023). https://doi.org/10.1016/j.jallcom.2022.167874

    Article  CAS  Google Scholar 

  48. R.A. Young, D.B. Wiles, Profile shape functions in Rietveld refinements. J. Appl. Cryst. 15, 430 (1982). https://doi.org/10.1107/S002188988201231X

    Article  CAS  Google Scholar 

  49. B. Samantaray, S. Ravi et al., Magnetic structure and magnetic properties of nd. Compd. J. Appl. Phys. 110, 093906 (2011). https://doi.org/10.1063/1.3656714

    Article  CAS  Google Scholar 

  50. S.K. Srivastava, M. Kar, S. Ravi, Effect of Co doping on the magnetic properties of La0.85Ag0.15(Mn1-yCoy)O3. J. Magn. Magn. Mater. 32, 107 (2008). https://doi.org/10.1016/j.jmmm.2008.02.024

    Article  CAS  Google Scholar 

  51. H. Uwe, N. Gibson, The Scherrer equation versus the ‘Debye-Scherrer equation. Nat. Nanotechnol. 6, 534 (2011). https://doi.org/10.1038/nnano.2011.145

    Article  CAS  Google Scholar 

  52. A. Dieguez, A. Romano-Rodrıguez, A. Vila, J.R. Morante, The complete Raman spectrum of nanometric SnO2 particles. J. Appl. Phys. 90, 1550 (2001). https://doi.org/10.1063/1.1385573

    Article  CAS  Google Scholar 

  53. A. Ammari, B. Bellal, N. Zebbar, B. Benrabah, M. Trari, Thermal-frequency dependence study of the sub-band localized states effect in Sb-doped SnO2 based Sol-gel thin films. Thin Solid Films 632, 66 (2017). https://doi.org/10.1016/j.tsf.2017.02.060

    Article  CAS  Google Scholar 

  54. K.K. Nair, P. Kumar, V. Kumar, R.A. Harris, R.E. Kroon, B. Viljoen, P.M. Shumbula, M. Mlambo, H.C. Swart, Synthesis and evaluation of optical and antimicrobial properties of Ag-SnO2 nanocomposites. Phys. B 535, 338 (2018). https://doi.org/10.1016/j.physb.2017.08.028

    Article  CAS  Google Scholar 

  55. D. Huang, H. Nakamura, K. Küster, A. Yaresko, D. Samal, N.B.M. Schröter, V.N. Strocov, U. Starke, H. Takagi, Phys. Rev. Mater. 3, 124203 (2019). https://doi.org/10.1103/PhysRevMaterials.3.124203

    Article  CAS  Google Scholar 

  56. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous Germanium. Phys. Status Solidi. 15, 627 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  57. S. Liu, W. Ding, Y. Gu, W. Chai, Effect of Sb doping on the microstructure and optoelectrical properties of Sb-doped SnO2 films prepared by spin coating. Phys. Scr. 85, 065601 (2012). https://doi.org/10.1088/0031-8949/85/06/065601

    Article  CAS  Google Scholar 

  58. V.H. Tran, R. Khan, I.H. Lee, S.H. Lee, Low-temperature solution-processed ionic liquid modified SnO2 as an excellent electron transport layer for inverted organic solar cells. Sol. Energy Mater. Sol. Cells. 179, 260 (2018). https://doi.org/10.1016/j.solmat.2017.12.013

    Article  CAS  Google Scholar 

  59. A.S. Reddy, N.M. Figueiredo, A. Cavaleiro, Pulsed direct current magnetron sputtered nanocrystalline tin oxide films. Appl. Surf. Sci. 258, 8902 (2012). https://doi.org/10.1016/j.apsusc.2012.05.112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SKS acknowledge the financial support from UGC-DAE CSR through a Collaborative Research Scheme (CRS) Project Number CRS/2021-22/01/364. This work was partially carried out using the facilities of UGC-DAE CSR. KK Singha would like to express special thanks to Dr. Vasant G. Sathe (Centre-Director) and Mr. Ajay K. Rathore (Scientific Officer -F) for helping out to do Raman Spectroscopy at UGC-DAE-CSR Indore. Further, KK Singha would like to express special thanks to Dr. Mukul Gupta (Scientist-G), Mr. Layanta Behera (Scientific Assistant-E) for helping out to do XRD measurement at UGC-DAE-CSR Indore. KK Singha acknowledges the help from CIF, IIT Guwahati for SEM, and XPS measurements.

Funding

This work was supported by UGC-DAE Consortium for Scientific Research, University Grants Commission (Grant number  CRS/2021-22/01/364).

Author information

Authors and Affiliations

Authors

Contributions

KKS: Investigation, methodology, formal analysis, writing manuscript; AM: investigation; MG: resources, review and editing; VGS: resources, review and editing; DK: resources, review and editing; SKS: conceptualization, methodology, visualization, writing—review & editing, supervision.

Corresponding author

Correspondence to S. K. Srivastava.

Ethics declarations

Conflict of interest

The authors state that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singha, K.K., Mondal, A., Gupta, M. et al. Impact of Sb/Ag co-doping on SnO2’s optical, transport, and crystallographic properties for optoelectronic devices. J Mater Sci: Mater Electron 34, 1421 (2023). https://doi.org/10.1007/s10854-023-10854-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10854-4

Navigation