Skip to main content
Log in

Crystal structure, micro-structure, Raman spectroscopy, optical, magnetic, and electrical property of Sn0.94-yAg0.06SbyO2 compounds

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We conducted a comprehensive study on Sn0.94-yAg0.06SbyO2 (with y ranging from 0 to 0.10) compounds to investigate its crystal structure, morphology, optical, magnetic and transport properties. The creation of the tetragonal rutile phase of SnO2 and the successful insertion of Ag/Sb ions into the SnO2 lattice were confirmed by analysis of X-ray diffraction data and Raman spectroscopy. Elemental color mapping using EDS revealed a uniform distribution of the elements. The oxidation states of Sn, Sb, and Ag were observed to be + 4, + 3, and + 1, respectively. The optical property study showed a reduction in the bandgap as the doping level increased. All prepared samples tend to exhibit p-type behavior, and the total charge density decreased with an increase in the percentage of Ag/Sb co-doping. Magnetic property measurements indicated that these compounds displayed room temperature ferromagnetism up to 4 at % Ag–Sb co-doping level, beyond which they became diamagnetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available within the article.

References

  1. H. Ohno, Making nonmagnetic semiconductors ferromagnetic. Science 281, 951 (1998). https://doi.org/10.1126/science.281.5379.951

    Article  ADS  Google Scholar 

  2. L. Chouhan, S.K. Srivastava, A comprehensive review on recent advancements in d0 ferromagnetic oxide materials for spintronics application. Mater Sci Semicond Process. 147, 106768 (2022). https://doi.org/10.1016/j.mssp.2022.106768

    Article  Google Scholar 

  3. N. Jiang, B. Yang, Y. Bai, Y. Jiang, S. Zhao, The sign reversal of anomalous Hall effect derived from the transformation of scattering effect in cluster-assembled Ni 0.8 Fe 0.2 nanostructural films. Nanoscale. 13(27), 11817–11826 (2021). https://doi.org/10.1039/D1NR02313F

    Article  Google Scholar 

  4. M. Först, A. Caviglia, R. Scherwitzl et al., Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface. Nature Mater 14, 883–888 (2015). https://doi.org/10.1038/nmat4341

    Article  ADS  Google Scholar 

  5. Y. Tsai, Z. Li, S. Hu, Recent progress of atomic layer technology in spintronics: mechanism materials and prospects. Nanomaterials 12, 661 (2022). https://doi.org/10.3390/nano12040661

    Article  Google Scholar 

  6. J.K. Furdyna, Diluted magnetic semiconductors. J. Appl. Phys. 64, R29 (1988). https://doi.org/10.1063/1.341700

    Article  ADS  Google Scholar 

  7. S.B. Ogale, R.J. Choudhary, J.P. Buban, S.E. Lofland, S.R. Shinde, S.N. Kale, V.N. Kulkarni, J. Higgins, C. Lanci, J.R. Simpson et al., High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped SnO2−δ. Phys. Rev. Lett. 91, 077205 (2003). https://doi.org/10.1103/PhysRevLett.91.077205

    Article  ADS  Google Scholar 

  8. X.L. Wang, Z.X. Dai, Z. Zeng, Search for ferromagnetism in SnO2 doped with transition metals (V, Mn, Fe, and Co). J. Phys. Condens. Matter. 20, 045214 (2008). https://doi.org/10.1088/0953-8984/20/04/045214

    Article  ADS  Google Scholar 

  9. S.K. Srivastava, P. Lejay, B. Barbara, O. Boisron, S. Pailhès, G. Bouzerar, Absence of ferromagnetism in Mn-doped tetragonal zirconia. J. Appl. Phys. 110, 043929 (2011). https://doi.org/10.1063/1.3626788

    Article  ADS  Google Scholar 

  10. S.K. Srivastava, Magnetic property of Mn-doped monoclinic ZrO2 compounds. J Supercond Nov Magn. 33, 2501 (2020). https://doi.org/10.1007/s10948-020-05522-1

    Article  Google Scholar 

  11. P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring, Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater. 2, 673 (2003). https://doi.org/10.1038/nmat984

    Article  ADS  Google Scholar 

  12. M. Subramanian, P. Thakur, M. Tanemura, T. Hihara, V. Ganesan, T. Soga, K.H. Chae, R. Jayavel, T. Jimbo, Intrinsic ferromagnetism and magnetic anisotropy in Gd-doped ZnO thin films synthesized by pulsed spray pyrolysis method. J. Appl. Phys. 108, 053904 (2010). https://doi.org/10.1063/1.3475992

    Article  ADS  Google Scholar 

  13. J.D. Bryan, S.M. Heald, S.A. Chambers, D.R. Gamelin, Strong room-temperature ferromagnetism in Co2+- doped TiO2 made from colloidal nanocrystals. J. Am. Chem. Soc. 126, 11640 (2004). https://doi.org/10.1021/ja047381r

    Article  Google Scholar 

  14. S.K. Srivastava, R. Brahma, S. Datta, S. Guha, S.S. Baro, B. Aakansha, D.R. Narzary, M. Basumatary, S.R. Kar, Effect of (Ni-Ag) co-doping on crystal structure and magnetic property of SnO2. Mater. Res. Express. 6, 126107 (2019). https://doi.org/10.1088/2053-1591/ab58b1

    Article  ADS  Google Scholar 

  15. S.K. Srivastava, S.S. Aakansha, B. Baro, D.R. Narzary, R. Basumatary, S..R. Brahma, Crystal structure and magnetic properties of (Co-Ag) co-doped SnO2 compounds. J Supercond Nov Magn. 34, 461 (2021). https://doi.org/10.1007/s10948-020-05676-y

    Article  Google Scholar 

  16. T. Dietl, A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater 9, 965 (2010). https://doi.org/10.1038/nmat2898

    Article  ADS  Google Scholar 

  17. G. Bouzerar, T. Ziman, Model for vacancy-induced d0 ferromagnetism in oxide compounds. Phys. Rev. Lett. 96, 207602 (2006). https://doi.org/10.1103/PhysRevLett.96.207602

    Article  ADS  Google Scholar 

  18. F. Máca, J. Kudrnovský, V. Drchal, G. Bouzerar, Magnetism without magnetic impurities in oxides ZrO2 and TiO2. Philos. Mag. 88, 2755 (2008). https://doi.org/10.1080/14786430802342584

    Article  ADS  Google Scholar 

  19. K. Yang, Y. Dai, B. Huang, M.-H. Whangbo, On the possibility of ferromagnetism in carbon-doped anatase TiO2. Appl. Phys. Lett. 93, 132507 (2008). https://doi.org/10.1063/1.2996024

    Article  ADS  Google Scholar 

  20. H. Luitel, D. Sanyal, Ab initio calculation of magnetic properties in B, Al, C, Si, N, P and As-doped rutile TiO2. Int. J. Mod. Phys. B 31, 1750227 (2017). https://doi.org/10.1142/S0217979217502277

    Article  ADS  Google Scholar 

  21. F. Máca, J. Kudrnovský, V. Drchal, G. Bouzerar, Magnetism without magnetic impurities in ZrO2 oxide. Appl. Phys. Lett. 92, 212503 (2008). https://doi.org/10.1063/1.2936858

    Article  ADS  Google Scholar 

  22. X. Guan, N. Cai, C. Yang, J. Chen, P. Lu, Magnetic properties of ZnO nanowires with Li dopants and Zn vacancies. Thin Solid Films 605, 273 (2016). https://doi.org/10.1016/j.tsf.2015.04.077

    Article  ADS  Google Scholar 

  23. W.-Z. Xiao, L.-L. Wang, L. Xu, X.-F. Li, H.-Q. Deng, First-principles study of magnetic properties in Ag-doped SnO2: first-principles study on magnetic properties in Ag-doped SnO2. Phys. Status Solidi B 248, 1961 (2011). https://doi.org/10.1002/pssb.201046567

    Article  ADS  Google Scholar 

  24. W. Wei, Y. Dai, M. Guo, K. Lai, B. Huang, Density functional study of magnetic properties in Zn-doped SnO2. J. Appl. Phys. 108, 093901 (2010). https://doi.org/10.1063/1.3503224

    Article  ADS  Google Scholar 

  25. Hou D.L., Meng H.J., Jia L.Y., Ye X.J., Zhou H.J., Li, X.L. (2007) Impurity concentration study on ferromagnetism in Cu-doped TiO2 thin films, Europhys. Lett. 78 67001. https://iopscience.iop.org/article/. https://doi.org/10.1209/0295-5075/78/67001

  26. S. Duhalde, M.F. Vignolo, F. Golmar, C. Chiliotte, C.E.R. Torres, L.A. Errico, A.F. Cabrera, M. Rentería, F.H. Sánchez, M. Weissmann, Appearance of room-temperature ferromagnetism in Cu-doped TiO2−δ films. Phys. Rev. B 72, 161313 (2005). https://doi.org/10.1103/PhysRevB.72.161313

    Article  ADS  Google Scholar 

  27. J.V. Pinto, M.M. Cruz, R.C. da Silva, E. Alves, M. Godinho, Magnetic properties of TiO2 rutile implanted with Ni and Co. J Magn Magn Mater. 294, e73 (2005). https://doi.org/10.1016/j.jmmm.2005.03.057

    Article  Google Scholar 

  28. L. Chouhan, G. Bouzerar, S.K. Srivastava, Effect of Mg-doping in tailoring d0 ferromagnetism of rutile TiO2 compounds for spintronics application. J Mater Sci Mater Electron. 32, 11193 (2021). https://doi.org/10.1007/s10854-021-05784-y

    Article  Google Scholar 

  29. L. Chouhan, R. Narzary, B. Dey, S.K. Panda, M.K. Manglam, L. Roy, R. Brahma, A. Mondal, M. Kar, S. Ravi, S.K. Srivastava, Tailoring room temperature d0 ferromagnetism, dielectric, optical, and transport properties in Ag-doped rutile TiO2 compounds for spintronics applications. J Mater Sci: Mater Electron. 32, 28163 (2021). https://doi.org/10.1007/s10854-021-07194-6

    Article  Google Scholar 

  30. S. Song, J. Wei, X. He, G. Yan, M. Jiao, W. Zeng, F. Daiab, M. Shi, Oxygen vacancies generated by Sn-doped ZrO2 promoting the synthesis of dimethyl carbonate from methanol and CO2. RSC Adv. 11, 35361 (2021). https://doi.org/10.1039/D1RA07060F

    Article  ADS  Google Scholar 

  31. M.C. Dimri, H. Khanduri, H. Kooskora, M. Kodu, R. Jaaniso, I. Heinmaa, A. Mere, J. Krustok, R. Stern, Room-temperature ferromagnetism in Ca and Mg stabilized cubic zirconia bulk samples and thin films prepared by pulsed laser deposition. J. Phys. D Appl. Phys. 45, 475003 (2012). https://doi.org/10.1088/0022-3727/45/47/475003

    Article  ADS  Google Scholar 

  32. N.H. Hong, N. Poirot, J. Sakai, Ferromagnetism observed in pristine SnO2 thin films. Phys. Rev. B 77, 033205 (2008). https://doi.org/10.1103/PhysRevB.77.033205

    Article  ADS  Google Scholar 

  33. G.S. Chang, J. Forrest, E.Z. Kurmaev, A.N. Morozovska, M.D. Glinchuk, J.A. McLeod, A. Moewes, T.P. Surkova, N.H. Hong, Oxygen-vacancy-induced ferromagnetism in undoped SnO2 thin films. Phys. Rev. B 85, 165319 (2012). https://doi.org/10.1103/PhysRevB.85.165319

    Article  ADS  Google Scholar 

  34. S.K. Srivastava, P. Lejay, B. Barbara, S. Pailhès, V. Madigou, G. Bouzerar, Possible room-temperature ferromagnetism in K-doped SnO2: X-ray diffraction and high-resolution transmission electron microscopy study. Phys. Rev. B. 82, 193203 (2010). https://doi.org/10.1103/PhysRevB.82.193203

    Article  ADS  Google Scholar 

  35. S.K. Srivastava, P. Lejay, A. Hadj-Azzem, G. Bouzerar, Non-magnetic impurity induced magnetism in Li-doped SnO2 nanoparticles. J. Supercond. Nov. Magn. 27, 487 (2013). https://doi.org/10.1007/s10948-013-2287-0

    Article  Google Scholar 

  36. L. Chouhan, S.K. Panda, S. Bhattacharjee, B. Das, A. Mondal, B.N. Parida, R. Brahma, M.K. Manglam, M. Kar, G. Bouzerar, S.K. Srivastava, Room temperature d0 ferromagnetism, zero dielectric loss and ac-conductivity enhancement in p-type Ag-doped SnO2 compounds. J. Alloys Compd. 870, 159515 (2021). https://doi.org/10.1016/j.jallcom.2021.159515

    Article  Google Scholar 

  37. J. Wang, D. Zhou, Y. Li, P. Wu, Experimental and first-principle studies of ferromagnetism in Na-doped SnO2 nanoparticles. Vacuum 141, 62 (2017). https://doi.org/10.1016/j.vacuum.2017.03.024

    Article  ADS  Google Scholar 

  38. S. Chawla, K. Jayanthi, R.K. Kotnala, High temperature carrier controlled ferromagnetism in alkali doped ZnO nanorods. J. Appl. Phys. 106, 113923 (2009). https://doi.org/10.1063/1.3261722

    Article  ADS  Google Scholar 

  39. R. Narzary, B. Dey, L. Chouhan, S. Kumar, S. Ravi, S.K. Srivastava, Optical band gap tuning, zero dielectric loss and room temperature ferromagnetism in (Ag/Mg) co-doped SnO2 compounds for spintronics applications. Materi Sci Semicond Process 142, 106477 (2022). https://doi.org/10.1016/j.mssp.2022.106477

    Article  Google Scholar 

  40. J. Rodriguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter 192, 55 (1993). https://doi.org/10.1016/0921-4526(93)90108-I

    Article  ADS  Google Scholar 

  41. R.A. Young, first ed., Oxford University Press, New York, 1993 https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0885715600019497.

  42. P. Scherrer, GöttingerNachrichten Gesell, 2 (1918) 98. https://eudml.org/doc/59018

  43. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121 (1951). https://doi.org/10.1103/PhysRev.83.121

    Article  ADS  Google Scholar 

  44. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15, 627 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  Google Scholar 

  45. S. Picozzi, P. Santini, A.J. Freeman, Doping-dependent magnetism and band gap in Sn1−xSbxO2 from first principles. Appl. Phys. Lett. 85(16), 3410–3412 (2004)

    Google Scholar 

  46. R. Schmidt, A. Faghaninia, G. Kresse, E.S. Aydil, Doping and disorder in SnO2. Phys. Rev. B 89(19), 195205 (2014)

    Google Scholar 

  47. J.W. Xie, Y.M. Shi, X.H. Wang, H.F. Yang, Z.H. Cao, Z.D. Zhang, Ferromagnetism and antiferromagnetism in Sb-doped SnO2 nanoparticles. J. Appl. Phys. 111(7), 07A906 (2012)

    Google Scholar 

  48. A. Singh, R.J. Choudhary, Room temperature ferromagnetism in undoped and Sb doped SnOs2 nanoparticles. J. Magn. Magn. Mater. 374, 397–402 (2015)

    Google Scholar 

Download references

Acknowledgements

This present research work is not supported by any kind of research grant.

Author information

Authors and Affiliations

Authors

Contributions

RN: investigation, methodology, formal analysis, writing manuscript; SR: conceptualization, visualization, writing—review and editing, supervision; SKS: conceptualization, methodology, visualization, writing—review and editing, supervision.

Corresponding authors

Correspondence to S. Ravi or S. K. Srivastava.

Ethics declarations

Conflict of interest

The authors state that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narzary, R., Ravi, S. & Srivastava, S.K. Crystal structure, micro-structure, Raman spectroscopy, optical, magnetic, and electrical property of Sn0.94-yAg0.06SbyO2 compounds. Appl. Phys. A 129, 630 (2023). https://doi.org/10.1007/s00339-023-06910-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06910-9

Keywords

Navigation