Skip to main content
Log in

Defect driven enhanced ferromagnetism in Sb-modified SnO2 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work reports the tailoring of optical and magnetic properties in Sb-doped SnO2 nanoparticles (NPs), i.e., Sn1-xSbxO2(x = 0.0, 0.03, 0.06, 0.09) synthesized by gel-combustion technique. The structural properties of these nanoparticles are investigated by the X-ray diffraction (XRD) technique. Detailed structural analysis shows the crystallization of all these NPs in tetragonal rutile structure, as observed in pristine SnO2 without any trace of the secondary phase. Nevertheless, the incorporation of Sb dopant was found to increase the lattice constant systematically. Investigation of surface morphology by scanning electron microscopy and particle size by transmission electron microscopy also indicates a systematic increase in the grain size and particle size with Sb doping. Intriguingly, bandgap and room-temperature ferromagnetism (RTFM) are found to be sensitive to particle size and oxygen vacancies. UV–visible absorption, Fourier transform infrared, photoluminescence, and X-ray photoelectron spectroscopic measurements are carried out to explore the underlying physical mechanisms. Besides, the increase in RTFM and decrease in the bandgap witnessed in Sb-doped SnO2 NPs can be exploited for magneto-optic and spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. M.A.H. Abdullah, S. Mika, B. Tanujjal, D. Joydeep, Appl. Surf. Sci. 370, 229–236 (2016)

    Article  Google Scholar 

  2. Morvarid Najjar, Hasan Ali Hosseini, Abdolhossen Masoudi, Zahra Sabouri, Asma Mostafapour, Mehrdad Khatami, Majid Darroudi, Optik Int. J. Light. Electron. Optics 242, 167152 (2021)

    Article  CAS  Google Scholar 

  3. S. Suthakaran, S. Dhanapandian, N. Krishnakumar, N. Ponpandian, J. Phys. Chem. Solids 141, 109407 (2020)

    Article  CAS  Google Scholar 

  4. A. Mamakhel, M. Søndergaard, K. Borup, Bo Brummerstedt Iversen. J. Supercrit Fluids. 166, 105029 (2020)

    Article  CAS  Google Scholar 

  5. P.G. Harrison, M.J. Willett, Nature 332, 337–339 (1988)

    Article  Google Scholar 

  6. S. Das, K.G. Girija, A.K. Debnath, R.K. Vatsa, J. Alloys Compd. 854, 157276 (2021)

    Article  CAS  Google Scholar 

  7. Myung Sik Choi, Jihye Ahn, Min Young Kim, Ali Mirzaei, Soon-Mok. Choi, Dong Won Chun, Changhyun Jin, Kyu Hyoung Lee, Appl. Surf. Sci 565, 150493 (2021)

    Article  Google Scholar 

  8. N.M. Shaalan, T. Yamazaki, T. Kikuta, Sens. Actuators B Chem. 166, 671–677 (2012)

    Article  Google Scholar 

  9. Mc.C. Rameech, S. Nozomi, S. Umesh, D. Soumen, K. Amit, J.C. Hyoung, K. Ramki, S. Sudipta, Nanoscale 4, 7256–7265 (2012)

    Article  Google Scholar 

  10. S. Wang, J. Liu, X. Yu, Y. Zhang, J. Liu, Z. Zhong, Z. Zhan, M. Zhang, X. Yang, P. Dong, Y. Zhang, Int. J. Electrochem. Sci. 14, 9112–9121 (2019)

    Article  CAS  Google Scholar 

  11. L. Na, S. Huawei, C. Hao, C.I. Wang, ElectrochimicaActa 130, 670–678 (2014)

    Article  Google Scholar 

  12. Hu. Zhiqing, Xu. Xinfeng, X. Wan, Yu. Kaifeng, Ce Liang. J. Alloys Compd. 835, 155446 (2020)

    Google Scholar 

  13. Ruochen Zhang, Ke. Lia, Shouzhen Ren, Jiafu Chen, Xiaojian Feng, Yingqiao Jiang, Zhangxing He, Lei Dai, Ling Wang, Appl. Surf. Sci. 526, 146685 (2020)

    Article  CAS  Google Scholar 

  14. Kuiming Liu, Shengming Zhu, Xufeng Dong, Hao Huang, Min Qi, Adv. Mater. Interfaces. 7, 1901916 (2020)

    Article  CAS  Google Scholar 

  15. L. Zhengdao, Z. Yong, S. Ruzhong, X. Yan, X. Haiquan, Z. Zhigang, Chin. Sci. Bull. 59, 2122–2134 (2014)

    Article  Google Scholar 

  16. H.J. Snaith, C. Ducati, Nano Lett. 5, 1259–1265 (2010)

    Article  Google Scholar 

  17. Young Wook Noh, Ju Ho. Lee, In Su. Jin, Sang Hyun Park, Jae Woong Jung, Nano Energy. 65, 104014 (2019)

    Article  CAS  Google Scholar 

  18. Zhenxing Li, Rui Wang Jingjing. Xue, Xiaofei Xing, Yu. Chengcheng, Tianyi Huang, Junmei Chu, Kai-Li. Wang, Chong Dong, Zhiting Wei, Yepin Zhao, Zhao-Kui. Wang, Yang Yang, Am. Chem. Soc. 141, 17610–17616 (2019)

    Article  CAS  Google Scholar 

  19. S.H. Mohamed, J. Alloys Compd. 510, 119–124 (2012)

    Article  CAS  Google Scholar 

  20. J.M. Xu, L. Li, S. Wang, H.L. Ding, Y.X. Zhang, G.H. Li, CrystEngComm 15, 3296–3300 (2013)

    Article  CAS  Google Scholar 

  21. Y.D. Wang, I. Djerdj, B. Smarsly, M. Antonietti, Chem. Mater. 21, 3202–3209 (2009)

    Article  CAS  Google Scholar 

  22. J.M. Wu, Nanotechnology 21, 235501 (2010)

    Article  Google Scholar 

  23. U. Zum Felde, M. Haase, H. Weller, J. Phys. Chem. B 104, 9388–9395 (2000)

    Article  CAS  Google Scholar 

  24. J. Lim, B.Y. Jeong, H.G. Yoon, S.N. Lee, J. Kim, J. NanosciNanotechnol. 12, 1675–1678 (2012)

    CAS  Google Scholar 

  25. H. Ohta, H. Hosono, Mater. Today 7, 42 (2004)

    Article  CAS  Google Scholar 

  26. Z. Lv, J. Li, F. Yang, K. Cao, Q. Bao, Y. Sun, J. Yuan, Front. Bioeng Biotechnol. 8, 673 (2020)

    Article  Google Scholar 

  27. N. Yu, C. Peng, Z. Wang, Z. Liu, B. Zhu, Z. Yi, M. Zhu, X. Liu, Z. Chen, Nanoscale 10, 2542–2554 (2018)

    Article  CAS  Google Scholar 

  28. G.A. Prinz, Science 282, 1660 (1998)

    Article  CAS  Google Scholar 

  29. S. Picozzi, Nat. Mater. 3, 349 (2004)

    Article  CAS  Google Scholar 

  30. W.J. Dong, J.J. Xu, C. Wang, Y. Lu, X.Y. Liu, X. Wang, X.T. Yuan, Z. Wang, T.Q. Lin, M.L. Sui, I.W. Chen, F.Q. Huang, Adv. Mater. 29, 1700136 (2017)

    Article  Google Scholar 

  31. X. Guan, P. Luo, X. Li, Y. Yu, D. Chen, L. Zhang, Int. J. Electrochem. Sci. 13, 5667–5680 (2018)

    Article  CAS  Google Scholar 

  32. M. Epifani, J.D. Prades, E. Comini, E. Pellicer, M. Avella, P. Siciliano, G. Faglia, A. Cirera, R. Scotti, F. Morazzoni, J.R. Morante, J. Phys. Chem. C 112, 19540–19546 (2008)

    Article  CAS  Google Scholar 

  33. L. Yang, Y. Yang, T. Liu, X. Ma, S.W. Lee, Y. Wang, New J. Chem. 42, 15253–15262 (2018)

    Article  CAS  Google Scholar 

  34. Y. Yang, Y. Wang, S. Yin, Appl. Surf. Sci. 420, 399–406 (2017)

    Article  CAS  Google Scholar 

  35. F.H. Aragón, J.A.H. Coaquira, P. Hidalgo, S.L.M. Brito, D. Gouvêa, R.H.R. Castro, J. Phys.: Condens. Matter. 22, 496003 (2010)

    Google Scholar 

  36. H. Wang, Y. Yan, K. Li, X. Du, Z. Lan, H. Jin, Phys. Status Solidi B 247, 444–448 (2010)

    Article  CAS  Google Scholar 

  37. V.B. Kamble, S.V. Bhat, A.M. Umarji, J. Appl. Phys. 113, 244307 (2013)

    Article  Google Scholar 

  38. G.S. Chang, J. Forrest, E.Z. Kurmaev, A.N. Morozovska, M.D. Glinchuk, J.A. McLeod, A. Moewes, T.P. Surkova, N.H. Hong, Phys. Rev. B 85, 165319 (2012)

    Article  Google Scholar 

  39. Z. Wang, M. Zhi, M. Xu, C. Guo, Z. Man, Z. Zhang, Q. Li, Y. Lv, W. Zhao, J. Yan, C. Zhai, J. Mater. Sci. 56, 7348–7356 (2021)

    Article  CAS  Google Scholar 

  40. K. Suematsu, M. Sasaki, N. Ma, M. Yuasa, K. Shimanoe, ACS Sens. 1, 913–920 (2016)

    Article  CAS  Google Scholar 

  41. A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, K.Y. Rajpure, J. Alloys Compd. 509, 3108–3115 (2011)

    Article  CAS  Google Scholar 

  42. K. Balasubramanian, G. Venkatachari, Mater. Res. Express 6, 1250k6 (2019)

    Article  Google Scholar 

  43. M. Esro, S. Georgakopoulos, H. Lu, G. Vourlias, A. Krier, W.I. Milne, W.P. Gillin, G. Adamopoulos, J. Mater. Chem. C 4, 3563–3570 (2016)

    Article  CAS  Google Scholar 

  44. K.S. Cho, H.K. Kim, RSC Adv. 8, 2599–2609 (2018)

    Article  CAS  Google Scholar 

  45. S.D. Ponja, B.A.D. Williamson, S. Sathasivam, D.O. Scanlon, I.P. Parkin, C.J. Carmalt, J. Mater. Chem. C 6, 7257–7266 (2018)

    Article  CAS  Google Scholar 

  46. J.I. Scott, R.F. Martinez-Gazoni, M.W. Allen, R.J. Reeves, J. Appl. Phys. 126, 135702 (2019)

    Article  Google Scholar 

  47. A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, K.Y. Rajpure, J. Alloys Compd. 505, 416–422 (2010)

    Article  CAS  Google Scholar 

  48. Z.Q. Li, Y.L. Yin, X.D. Liu, L.Y. Li, H. Liu, Q.G. Song, J. Appl. Phys. 106, 083701 (2009)

    Article  Google Scholar 

  49. R. Medhi, C.H. Li, S.H. Lee, M.D. Marquez, A.J. Jacobson, T.C. Lee, T.R. Lee, A.C.S. Appl, Nano. Mater. 2, 6554–6564 (2019)

    CAS  Google Scholar 

  50. T. Jintakosol, Appl. Mech. Mater. 749, 141–145 (2015)

    Article  Google Scholar 

  51. W. Zhou, Y. Liu, Y. Yang, P. Wu, J. Phys. Chem. C 118, 6448–6453 (2014)

    Article  CAS  Google Scholar 

  52. G. Rahman, V.M. García-Suárez, S.C. Hong, Phys. Rev. B 78, 184404 (2008)

    Article  Google Scholar 

  53. V. Agrahari, A.K. Tripathi, M.C. Mathpal, A.C. Pandey, S.K. Mishra, R.K. Shukla, A. Agarwal, J. Mater. Sci: Mater Electron. 26, 9571–9582 (2015)

    CAS  Google Scholar 

  54. Ç. Kılıç, A. Zunger, Phys. Rev. Lett. 88, 095501 (2002)

    Article  Google Scholar 

  55. T. Zima, N. Bulina, Mater. Res. Bull. 117, 48–55 (2019)

    Article  CAS  Google Scholar 

  56. F. Xue, X. Liu, J. Liu, J. Phys. Chem. C 123, 684–690 (2019)

    Article  CAS  Google Scholar 

  57. F. Paraguay-Delgado, F.C. Vasquez, J.T. Holguín-Momaca, C.R. Santillán-Rodríguez, J.A. Matutes-Aquino, S.F. Olive-Méndez, J. Magn. Magn. Mater. 476, 183–187 (2019)

    Article  CAS  Google Scholar 

  58. M. Saravanakumar, S. Agilan, N. Muthukumarasamy, V. Rukkumani, A. Marusamy, A. Ranjith, Acta Phys. Pol. A 127, 1656–1660 (2015)

    Article  CAS  Google Scholar 

  59. H.K. Mallick, Y. Zhang, J. Pradhan, M.P.K. Sahoo, A.K. Pattanaik, J. Alloys Compd. 854, 156067 (2021)

    Article  CAS  Google Scholar 

  60. J. Hays, A. Punnoose, R. Baldner, M. Engelhard, J. Peloquin, K.M. Reddy, Phys. Rev. B 72, 075203 (2005)

    Article  Google Scholar 

  61. A. Punnoose, J. Hays, A. Thurber, M.H. Engelhard, R.K. Kukkadapu, C. Wang, V. Shutthanandan, S. Thevuthasan, Phys. Rev. B 72, 054402 (2005)

    Article  Google Scholar 

  62. L. Villamagua, R. Rivera, D. Castillo, M. Carini, AIP Adv. 7, 105010 (2017)

    Article  Google Scholar 

  63. E. Muhire, J. Yang, X. Huo, M. Gao, Mater. Sci. 25, 21–27 (2019)

    Google Scholar 

  64. M.B. Sahana, C. Sudakar, G. Setzler, A. Dixit, J.S. Thakur, G. Lawes, R. Naik, V.M. Naik, P.P. Vaishnava, Appl. Phys. Lett. 93, 231909 (2008)

    Article  Google Scholar 

  65. N. Serpone, J. Phys. Chem. B 110, 24287–24293 (2006)

    Article  CAS  Google Scholar 

  66. B. Venugopal, B. Nandan, A. Ayyachamy, V. Balaji, S. Amirthapandian, B.K. Panigrahi, T. Paramasivam, RSC Adv. 4, 6141–6150 (2014)

    Article  CAS  Google Scholar 

  67. X. Wang, X. Wang, Q. Di, H. Zhao, B. Liang, J. Yang, Materials 10, 1398 (2017)

    Article  Google Scholar 

  68. A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, K.Y. Rajpure, J. Semicond. 32, 053001 (2011)

    Article  Google Scholar 

  69. S.M. Liu, W.Y. Ding, W.P. Chai, Phys. B Condens. Matter. 406, 2303–2307 (2011)

    Article  CAS  Google Scholar 

  70. S.G. Lee, S.B. Han, W.J. Lee, K.W. Park, Catalysts 10, 866 (2020)

    Article  CAS  Google Scholar 

  71. Y. Bouznit, A. Henni, Mater. Chem. Phys. 233, 242–248 (2019)

    Article  CAS  Google Scholar 

  72. V. Agrahari, M.C. Mathpal, S. Kumar, A. Agarwal, J. Mater. Sci: Mater Electron 27, 3053–3064 (2016)

    CAS  Google Scholar 

  73. A. Sundaresan, R. Bhargvi, N. Rangarajan, U. Siddesh, C.N.R. Rao, Phys. Rev. B: Condens. Matter Mater. Phys. 74, 161306(R) (2006)

    Article  Google Scholar 

  74. B. Santara, P.K. Giri, K. Imakita, M. Fujii, Nanoscale 5, 5476 (2013)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by HKM, BS, MPKS, and AKP. The first draft of the manuscript was written by HKM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to M. P. K. Sahoo or A. K. Pattanaik.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

There are no conflicts of interest. There is no involvement of Animals in current research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallick, H.K., Santara, B., Sahoo, M.P.K. et al. Defect driven enhanced ferromagnetism in Sb-modified SnO2 nanoparticles. J Mater Sci: Mater Electron 34, 80 (2023). https://doi.org/10.1007/s10854-022-09437-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09437-6

Navigation