Skip to main content

Advertisement

Log in

Etching of photon energy into binding energy in depositing carbon films at different chamber pressures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A hot filament chemical vapor deposition is an attractive technique to deposit carbon films of different applications. In this technique, it is also feasible to study the influence of chamber pressure in the deposition of carbon films. In the deposition chamber, having dissociated from the methane precursor, gaseous carbon atoms first convert into the graphite state atoms and then into the diamond state atoms. An increase in the chamber pressure changes the morphology and structure of the deposited carbon films. The deposited carbon films increase the growth rate by increasing the chamber pressure from 3.3 to 8.6 kPa. The rate of converting gaseous carbon atoms into diamond atoms also increases. At 11.3 and 14 kPa chamber pressure, gaseous carbon atoms convert into graphite state atoms at a high rate. The gas activation and gas collision processes vary broadly at varying chamber pressure. The morphology and structure of carbon films got deposited at different growth rates. The dissociation of molecular hydrogen into atomic hydrogen varies by varying the chamber pressure. The etching of photons (released from the hot filaments) into the dash- and golf-stick-shaped energy bits is from the atomic hydrogen. Thus, bits of differently shaped energy result. Gaseous carbon atoms convert into graphite and diamond state atoms depending on the set value of chamber pressure. Graphite state atoms bind under the same involved energy bits while conversion, which is not the case when the diamond state atoms bind. Carbon films in different phases have emerged with many applications: cutting tools, field emitter devices, heat sinks for electronic equipment, electrode materials, biological sensors, infrared imaging technology, etc. Such applications are well-suit to carbon-based materials compared to other materials. So, the study sets a new trend in depositing, characterizing, and analyzing carbon films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed in this study are a part of this article.

Code availability

Not Applicable.

References

  1. C. Yan, Y.K. Vohra, H. Mao, R.J. Hemley, Very high growth rate chemical vapor deposition of single-crystal diamond. Proc. Natl. Acad. Sci. U.S.A. 99, 12523–12525 (2002)

    Article  CAS  Google Scholar 

  2. M. Ali, M. Ürgen, Surface morphology, growth rate and quality of diamond films synthesized in hot filament CVD system under various methane concentrations. Appl. Surf. Sci. 257, 8420–8426 (2011)

    Article  CAS  Google Scholar 

  3. M. Ali, M. Ürgen, Growth of in-situ multilayer diamond films by varying substrate-filament distance in hot filament chemical vapor deposition system. J. Mater. Res. 27, 3123–3129 (2012)

    Article  CAS  Google Scholar 

  4. M. Ali, M. Ürgen, M.A. Atta, Effect of surface treatment on hot-filament chemical vapour deposition grown diamond films. J. Phys. D 45, 045301–045307 (2012)

    Article  Google Scholar 

  5. M. Mertens, M. Mohr, N. Wiora, K. Brühne, H.-J. Fecht, N-type conductive ultrananocrystalline diamond films grown by hot filament CVD. J. Nanomater. 2015, 527025 (2015)

    Article  Google Scholar 

  6. M. Ali, M. Ürgen, Switching dynamics of morphology-structure in chemically deposited carbon films: a new insight. Carbon 122, 653–663 (2017)

    Article  CAS  Google Scholar 

  7. G. Yan et al., Mechanical properties and wear behavior of multi-layer diamond films deposited by hot-filament chemical vapor deposition. Appl. Surf. Sci. 494, 401–411 (2019)

    Article  CAS  Google Scholar 

  8. R.L. Martins, D.D. Damm, E.J. Corat, V.J. Trava-Airoldi, D.M. Barquete, Mitigating residual stress of high temperature CVD diamond films on vanadium carbide coated steel. J. Vac. Sci. Technol. A 39, 013401 (2021)

    Article  CAS  Google Scholar 

  9. M. Ali, M. Ürgen, Simultaneous growth of diamond and nanostructured graphite thin films by hot filament chemical vapor deposition. Solid State Sci. 14, 150–154 (2012)

    Article  CAS  Google Scholar 

  10. R. Ahmed et al., Ultraviolet micro-Raman stress map of polycrystalline diamond grown selectively on silicon substrates using chemical vapor deposition. Appl. Phys. Lett. 112, 181907 (2018)

    Article  Google Scholar 

  11. R. Simões, B. Martins, J. Santos, V. Neto, HFCVD diamond-coated mechanical seals. Coatings 8, 172 (2018)

    Article  Google Scholar 

  12. N. Yang et al., Conductive diamond: synthesis, properties, and electrochemical applications. Chem. Soc. Rev. 48, 157–204 (2019)

    Article  CAS  Google Scholar 

  13. M. Behera, A. Jena, S.K. Pattnaik, S. Padhi, S.K. Sarangi, The effect of transition-metal seeding powder on deposition and growth of diamond synthesized by hot filament chemical vapor deposition processes on cemented carbide substrates and its characterization. Mater. Chem. Phys. 256, 123638 (2020)

    Article  CAS  Google Scholar 

  14. L. Zhang et al., Highly oriented graphitic networks grown by chemical vapor deposition as thermal interface materials. Ind. Eng. Chem. Res. 59, 22501–22508 (2020)

    Article  CAS  Google Scholar 

  15. J. Yu, R. Huang, L. Wen, C. Shi, Effects of density of gas flow rate on large area diamond growth in hot filament chemical vapour deposition. J. Mater. Sci. Lett. 17, 1011–1013 (1998)

    Article  CAS  Google Scholar 

  16. J. Zimmer, K.V. Ravi, Aspects of scaling CVD diamond reactors. Diam. Relat. Mater. 15, 229–233 (2006)

    Article  CAS  Google Scholar 

  17. S.T. Lee, Y.W. Lam, Z. Lin, Y. Chen, Q. Chen, Pressure effect on diamond nucleation in a hot filament CVD system. Phys. Rev. B 55, 15937–15941 (1997)

    Article  CAS  Google Scholar 

  18. J. Kang et al., Diamond nucleation and growth under very low pressure conditions. Diam. Relat. Mater. 9, 1691–1695 (2000)

    Article  CAS  Google Scholar 

  19. Z. Yu, A. Flodström, Pressure dependence of growth mode of HFCVD diamond. Diam. Relat. Mater. 6, 81–84 (1997)

    Article  CAS  Google Scholar 

  20. B. Heimann, V. Rako, V. Buck, Search for scaling parameters for growth rate and purity of hot-filament CVD diamond. Int. J. Refract. Metals Hard Mater. 19, 169–175 (2001)

    Article  CAS  Google Scholar 

  21. K.K. Hirakuri, T. Kobayashi, E. Nakamura, N. Mutsukura, G. Friedbacher, Y. Machi, Influence of the methane concentration on HF–CVD diamond under atmospheric pressure. Vacuum 63, 449–454 (2001)

    Article  CAS  Google Scholar 

  22. S. Schwarz, S.M. Rosiwal, M. Frank, D. Breidt, R.F. Singer, Dependence of the growth rate, quality, and morphology of diamond coatings on the pressure during the CVD-process in an industrial hot-filament plant. Diam. Relat. Mater. 11, 589–595 (2002)

    Article  CAS  Google Scholar 

  23. S.K. Sarangi, A. Chattopadhyay, A.K. Chattopadhyay, Effect of pretreatment methods and chamber pressure on morphology, quality and adhesion of HFCVD diamond coating on cemented carbide inserts. Appl. Surf. Sci. 254, 3721–3733 (2008)

    Article  CAS  Google Scholar 

  24. S.J. Harris, A.M. Weiner, Pressure and temperature effects on the kinetics and quality of diamond films. J. Appl. Phys. 75, 5026–5032 (1994)

    Article  CAS  Google Scholar 

  25. Y.-Z. Wan, D.W. Zhang, Z.-J. Liu, J.-T. Wang, Effects of temperature and pressure on CVD diamond growth from the C−H−O system. Appl. Phys. A 67, 225–231 (1998)

    Article  CAS  Google Scholar 

  26. R. Brunsteiner, R. Haubner, B. Lux, Hot-filament chemical vapour deposition of diamond on SiAlON at pressures up to 500 Torr. Diam. Relat. Mater. 2, 1263–1270 (1993)

    Article  CAS  Google Scholar 

  27. M. Ali, I.A. Qazi, Effect of substrate temperature on hot filament chemical vapor deposition grown diamond films. Int. J. Surf. Sci. Eng. 6, 214–230 (2012)

    Article  CAS  Google Scholar 

  28. M. Ali, Qualitative analyses of thin film-based materials validating new structures of atoms.(2023). https://doi.org/10.13140/RG.2.2.27720.65287/3

  29. L. Schäfer, C.-P. Klages, U. Meier, K. Kohse-Höinghaus, Atomic hydrogen concentration profiles at filaments used for chemical vapor deposition of diamond. Appl. Phys. Lett. 58, 571–573 (1991)

    Article  Google Scholar 

  30. T. Kobayashi, K.K. Hirakuri, N. Mutsukura, Y. Machi, Synthesis of CVD diamond at atmospheric pressure using the hot-filament CVD method. Diam. Relat. Mater. 8, 1057–1060 (1999)

    Article  CAS  Google Scholar 

  31. D.S. Knight, W.B. White, Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 4, 385–393 (1989)

    Article  CAS  Google Scholar 

  32. P.K. Chu, L. Li, Characterization of amorphous and nanocrystalline carbon films. Mater. Chem. Phys. 96, 253–277 (2006)

    Article  CAS  Google Scholar 

  33. A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philos. Trans. R. Soc. A 362, 2477–2512 (2004)

    Article  CAS  Google Scholar 

  34. J.C. Angus et al., Chemical vapour deposition of diamond. Philos. Trans. R. Soc. A 342, 195–208 (1993)

    CAS  Google Scholar 

  35. W.J.P. van Enckevort, G. Janssen, W. Vollenberg, J.J. Schermer, L.J. Giling, M. Seal, CVD diamond growth mechanisms as identified by surface topography. Diam. Relat. Mater. 2, 997–1003 (1993)

    Article  Google Scholar 

  36. P.W. May, A.Y. Mankelevich, From ultrananocrystalline diamond to single crystal diamond growth in hot filament and microwave plasma-enhanced CVD reactors: a unified model for growth rates and grain sizes. J. Phys. Chem. C 112, 12432–12441 (2008)

    Article  CAS  Google Scholar 

  37. J.-G. Zhang, X.-C. Wang, B. Shen, F.-H. Sun, Effect of deposition parameters on micro- and nano-crystalline diamond films growth on WC-Co substrates by HFCVD. Trans. Nonferrous Met. Soc. China 24, 3181 (2014)

    Article  CAS  Google Scholar 

  38. Y. Takamori et al., Insight into temperature impact of Ta filaments on high-growth-rate diamond (100) films by hot-filament chemical vapor deposition. Diam. Relat. Mater. 118, 108515 (2021)

    Article  CAS  Google Scholar 

  39. M. Ali, Atoms in gaseous and solid states and their energy and force relationships under transitional behaviors. (2023), https://doi.org/10.21203/rs.3.rs-88120/v7

  40. M. Ali, Atomic structure and binding of carbon atoms. (2023), https://www.preprints.org/manuscript/201801.0036/v16

  41. M. Ali, Heat and photon energy phenomena: dealing with matter at atomic and electronic level. (2023), https://www.preprints.org/manuscript/201701.0028/v15

  42. M. Ali, I.-N. Lin, Phase transitions and critical phenomena of tiny grains carbon films synthesized in microwave-based vapor deposition system. Surf. Interface Anal. 51, 389–399 (2019)

    Article  CAS  Google Scholar 

  43. R. Rathanasamy et al., Carbon-based multi-layered films for electronic application: a review. J. Electron. Mater. 50, 1845–1892 (2021)

    Article  CAS  Google Scholar 

  44. W. Choi et al., Doping effect of zeolite-templated carbon on electrical conductance and supercapacitance properties. Carbon 193, 42–50 (2022)

    Article  CAS  Google Scholar 

  45. Z. Zhang, S. Ohta, S. Shiba, O. Niwa, Nanocarbon film electrodes for electro-analysis and electrochemical sensors. Curr. Opin. Electrochem. 35, 101045 (2022)

    Article  CAS  Google Scholar 

  46. K. Kim et al., Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template. Nature 535, 131–135 (2016)

    Article  CAS  Google Scholar 

  47. X. Rao et al., Tuning C-C sp2/sp3 ratio of DLC films in FCVA system for biomedical application. Bioact. Mater. 5, 192–200 (2020)

    Article  Google Scholar 

  48. H. Lee et al., Friction and conductance imaging of sp2- and sp3-hybridized subdomains on single-layer graphene oxide. Nanoscale 8, 4063–4069 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Mubarak Ali expresses sincere gratitude to The Scientific and Technological Research Council of Türkiye (TÜBİTAK), the letter ref. # B.02.1.TBT.0.06.01-216.01-677-6045 for the postdoc award in the year 2010. Mubarak Ali thanks Ex-postdoc Advisor Professor Dr. Mustafa Ürgen retired from Istanbul Technical University. Permission to publish the article without Advisor’s name granted. He also thanks Mr. Talat ALPAK (ITU, Istanbul) for helping in the field-emission scanning microscope. Mubarak Ali appreciates the kind support of Professor Dr. Kürşat KAZMANLI, Dr. Erdem Arpat, Dr. Semih ÖNCEL, Dr. Manawer, Dr. Nagihan Sezgin, Dr. Sinan Akkaya, and others while staying at ITU.

Funding

The Scientific and Technological Research Council of Türkiye (TÜBİTAK), the letter ref. # B.02.1.TBT.0.06.01-216.01-677-6045.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Mubarak Ali.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M. Etching of photon energy into binding energy in depositing carbon films at different chamber pressures. J Mater Sci: Mater Electron 34, 1209 (2023). https://doi.org/10.1007/s10854-023-10604-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10604-6

Navigation