Skip to main content
Log in

Effect of deposition pressure on the properties of amorphous carbon films by hot-filament chemical vapor deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Deposition pressure is an important factor for the preparation of amorphous carbon (a-C) films through vacuum method. However, researches about the properties, especially optical and electrical properties of a-C films influenced by deposition pressure are still rare. In this work, hot-filament chemical vapor deposition (HFCVD) was used to deposit conductive a-C films under different deposition pressure conditions. As deposition pressure raised from 5 to 160 Pa, a structural transition from a-C to nanocrystalline graphite that led to the increase of cluster size, sp2 content and crystalline quality of a-C films was observed. The hybrid structure composed of amorphous and nanocrystalline phases was also revealed by high-resolution transmittance electron microscope. The mobility, transmittance and conductivity of films increased while the optical gap and carrier concentration decreased by elevating the deposition pressure. As a result, a-C films prepared at 160 Pa showed the best property with a roughness of 0.412 nm, a transmittance of 67%, an optical bandgap of 1.25 eV, a resistivity of 75 μΩ m and a mobility of 3.17 cm2 V−1 s−1, which is comparable to those prepared through other methods. The small roughness, good transmittance and low resistivity implied that high quality a-C films can be prepared through HFCVD method by adjusting the deposition pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)

    Article  Google Scholar 

  2. L. Li, L.L. Liu, X. Li, P. Guo, P. Ke, A. Wang, A.C.S. Appl, Mater. Interfaces 10, 13187–13198 (2018)

    Article  Google Scholar 

  3. T.J. Raeber, Z.C. Zhao, B.J. Murdoch, D.R. McKenzie, D.G. McCulloch, J.G. Partridge, Carbon 136, 280–285 (2018)

    Article  Google Scholar 

  4. B. Ghosh, S.C. Ray, R. Espinoza-González, R. Villarroel, S.A. Hevia, P. Alvarez-Vega, Chem. Phys. Lett. 698, 60–66 (2018)

    Article  Google Scholar 

  5. A.S. Saleemi, R. Singh, Z. Luo, X. Zhang, Diam. Relat. Mater. 72, 108–113 (2017)

    Article  Google Scholar 

  6. J. Robertson, Mater. Sci. Eng., R 37, 129–281 (2002)

    Article  Google Scholar 

  7. W. Zhang, Y. Hirai, T. Tsuchiya, O. Tabata, Appl. Surf. Sci. 443, 48–54 (2018)

    Article  Google Scholar 

  8. K. Ankit, A. Varade, N. Reddy, S. Dhan, M. Chellamalai, N. Balashanmugam, P. Krishna, Diam. Relat. Mater. 78, 39–43 (2017)

    Article  Google Scholar 

  9. Z. Zhai, H. Shen, J. Chen, X. Li, Y. Jiang, A.C.S. Appl, Mater. Interfaces 10, 17427–17436 (2018)

    Article  Google Scholar 

  10. D. Du, D. Liu, Z. Ye, X. Zhang, F. Li, Z. Zhou, L. Yu, Appl. Surf. Sci. 313, 462–469 (2014)

    Article  Google Scholar 

  11. B. Ren, L. Wang, L. Wang, J. Huang, K. Tang, Y. Lou, D. Yuan, Z. Pan, Y. Xia, Vacuum 107, 1–5 (2014)

    Article  Google Scholar 

  12. A.A. Solovyev, K.V. Oskomov, A.S. Grenadyorov, P.D. Maloney, Thin Solid Films 650, 37–43 (2018)

    Article  Google Scholar 

  13. N. Konkhunthot, S. Tunmee, X.L. Zhou, K. Komatsu, P. Photongkam, H. Saitoh, P. Wongpanya, Thin Solid Films 653, 317–325 (2018)

    Article  Google Scholar 

  14. M. Tsuchiya, K. Murakami, K. Magara, K. Nakamura, H. Ohashi, K. Tokuda, T. Takami, H. Ogasawara, Y. Enta, Y. Suzuki, Jpn. J. Appl. Phys. 55(6), 065502 (2016)

    Article  Google Scholar 

  15. R.U.R. Sagar, X. Zhang, C. Xiong, Y. Yu, Carbon 76, 64–70 (2014)

    Article  Google Scholar 

  16. Z. Zhai, H. Shen, J. Chen, J. Li, S. Zhang, RSC Adv. 6(48), 42353–42360 (2016)

    Article  Google Scholar 

  17. N. Salah, A. Alshahrie, J. Iqbal, P.M.Z. Hasan, M.S. Abdel-wahab, Tribol. Int. 103, 274–280 (2016)

    Article  Google Scholar 

  18. Z. Zhai, H. Shen, J. Chen, Y. Jiang, Q. Tang, Carbon 117, 322–330 (2017)

    Article  Google Scholar 

  19. H. Nakayama, K. Takatsuji, S. Moriwaki, K. Murakami, K. Mizoguchi, M. Nakayama, Y. Miura, Thin Solid Films 430, 309–312 (2003)

    Article  Google Scholar 

  20. T. Wu, H. Shen, B. Cheng, Y. Pan, B. Liu, J. Shen, Appl. Surf. Sci. 258, 999–1003 (2011)

    Article  Google Scholar 

  21. H. Oh, K. Cho, S. Kim, J. Korean Phys. Soc. 67(4), 638–642 (2015)

    Article  Google Scholar 

  22. M.R. Derakhshandeh, M.J. Eshraghi, M.M. Hadavi, M. Javaheri, S. Khamseh, M.G. Sari, P. Zarrintaj, M.R. Saeb, M. Mozafari, Surf. Innov. 6(3), 167–175 (2018)

    Article  Google Scholar 

  23. D. Bootkul, B. Supsermpol, N. Saenphinit, C. Aramwit, S. Intarasiri, Appl. Surf. Sci. 310, 284–292 (2014)

    Article  Google Scholar 

  24. J.L. Andújar, F.J. Pino, M.C. Polo, A. Pinyol, C. Corbella, E. Bertran, Diam. Relat. Mater. 11, 1005–1009 (2002)

    Article  Google Scholar 

  25. C. Wang, J. Shi, R. Xia, Z. Geng, Surf. Interface Anal. 45(4), 800–804 (2013)

    Article  Google Scholar 

  26. J. Hao, T. Xu, W. Liu, J. Non-Cryst, Solids 351(49–51), 3671–3676 (2005)

    Google Scholar 

  27. M. Rusop, A.M.M. Omer, S. Adhikari, S. Adhikary, H. Mokutani, N. Hasegawa, S. Kato, H. Uchida, T. Soga, T. Jimbo, M. Umeno, Surf. Rev. Lett. 11(06), 553–558 (2004)

    Article  Google Scholar 

  28. N. Ma, D. Jena, Phys. Rev. X 4(1), 011043 (2014)

    Google Scholar 

  29. M. Khadem, O.V. Penkov, V.E. Pukha, M.V. Maleyev, D.E. Kim, Carbon 80, 534–543 (2014)

    Article  Google Scholar 

  30. S. Bhaviripudi, X. Jia, M.S. Dresselhaus, J. Kong, Nano Lett. 10(10), 4128–4133 (2010)

    Article  Google Scholar 

  31. Y. Wang, H. Li, L. Ji, F. Zhao, X. Liu, Q. Kong, Y. Wang, W. Quan, H. Zhou, J. Chen, J. Phys. D 43(50), 505401 (2010)

    Article  Google Scholar 

  32. X.L. Peng, Z.H. Barber, T.W. Clyne, Surf. Coat. Tech. 138, 23–32 (2001)

    Article  Google Scholar 

  33. J. Tauc, Mater. Res. Bull. 3(1), 37–46 (1968)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from National Nature Science Foundation of China (Grant Nos. 61774084, 51702159) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions is gratefully acknowledged. Also, this work is supported by Funding for Outstanding Doctoral Dissertation in NUAA (Grant No. BCXJ17-08), Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX17_0251), NSF of Jiangsu province (Grant No. BK20170791), National and Jiangsu Postdoctoral Research Funds (Grant Nos. 2017M610328, 2018T110494, 1701141B), and Open Fund of Jiangsu Key Laboratory of Materials and Technology for Energy Conversion (Grant No. MTEC-2018M02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglie Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, Z., Shen, H., Chen, J. et al. Effect of deposition pressure on the properties of amorphous carbon films by hot-filament chemical vapor deposition. J Mater Sci: Mater Electron 30, 10145–10151 (2019). https://doi.org/10.1007/s10854-019-01350-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01350-9

Navigation