Skip to main content
Log in

Effects of high-entropy carbonate precursors on the electrochemical properties of NaCl-based high-entropy ceramics as anode materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, powders of (Mg0.2Co0.2Ni0.2Zn0.2Cu0.2)O high-entropy ceramic oxides (HEOS) were prepared by a hydrothermal method. X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM–EDS) and electrochemical technology were used to study the effect of different hydrothermal times on the performance of the HEOS. The obtained results showed that after prolonged hydrothermal treatment, crystalline high-entropy carbonates (Mg0.33Ni0.33Co0.33Zn0.33)CO3 (HECO3s) were formed, which facilitated crystal development and grain size reduction of their calcined product (Mg0.2Co0.2Ni0.2Zn0.2Cu0.2)O. The reduced grain size led to an increase in the specific surface area, which enhanced the electrochemical activity of Co and Ni in the high-entropy oxides and simultaneously considerably improved the electrochemical behavior of the product, resulting in an increase in the charge–discharge capacity from 465.8F/g to 921.1F/g at 0.1 A/g. The Jahn–Teller synergy of Co, Ni, and Cu ions stabilized the crystal structure during Li+ intercalation and deintercalation. Good charge/discharge reversibility and high capacity retention were maintained after 500 charge/discharge cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request. All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. D. Bérardan, S. Franger, D. Dragoe, A.K. Meena, N. Dragoe, Phys. Status. Solidi-R 10, 328 (2016)

    Article  Google Scholar 

  2. B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, P.E. George, R.O. Ritchie, Nat. Commun. 7, 10602 (2016)

    Article  CAS  Google Scholar 

  3. P. Sarker, T. Harrington, C. Toher, C. Oses, M. Samiee, J.P. Maria, D.W. Brenner, K.S. Vecchio, S. Curtarolo, Nat. Commun. 9, 4980 (2018)

    Article  Google Scholar 

  4. Z. Gan, N. Song, H. Zhang, Z. Ma, Y. Wang, J. Electrochem. Soc. 167, 085501 (2020)

    Article  CAS  Google Scholar 

  5. A. Huang, Y. Ma, J. Peng, L. Li, S.I. Chou, S. Ramakrishna, S. Peng, Science 1(2), 141–162 (2021)

    Google Scholar 

  6. E. Gabriel, D. Hou, E. Lee, H. Xiong, Energy Sci. Eng. 10(5), 1672–1705 (2022)

    Article  CAS  Google Scholar 

  7. C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jonesacob, S. Curtarolo, J.P. Maria, Nat. Commun. 6, 8485 (2015)

    Article  CAS  Google Scholar 

  8. D. Bérardan, S. Franger, A.K. Meena, N.J. Dragoe, Mater. Chem. A. 4(24), 9536–9541 (2016)

    Article  Google Scholar 

  9. S. Marik, D. Singh, B. Gonano, F. Veillon, D. Pelloquin, Y. Bréard, Scripta. Mater. 183, 107 (2020)

    Article  CAS  Google Scholar 

  10. N. Qiu, H. Chen, Z. Yang, S. Sun, Y. Wang, Y. Cui, J. Alloy. Compd. 777, 767 (2019)

    Article  CAS  Google Scholar 

  11. D.H. Lee, J.A. Lee, Y. Zhao, Z. Lu, J.Y. Suh, J.Y. Kim, J. Jang, I. Acta Mater. 140, 443 (2017)

    Article  CAS  Google Scholar 

  12. T.X. Nguyen, J. Patra, J.K. Chang, J.M. Ting, J. Mater. Chem. A. 8(36), 18963–18973 (2020)

    Article  CAS  Google Scholar 

  13. A. Poulia, E. Georgatis, A. Lekatou, A. Karantzalis, E. Int, J. Refract. Met. Hard. Mater. 57, 50–63 (2016)

    Article  CAS  Google Scholar 

  14. E. Yao, N. Zhao, Z. Qin, H. Ma, H. Li, S. Xu, T. An, J. Yi, F. Zhao, Nanomaterials 10(4), 725 (2020)

    Article  CAS  Google Scholar 

  15. M. Biesuz, L. Spiridigliozzi, G. Dell’Agli, M. Bortolotti, V.M. Sglavo, J. Mater. Sci. 53(11), 8074–8085 (2018)

    Article  CAS  Google Scholar 

  16. Z. Rák, J.P. Maria, D.W. Brenner, Mater. Lett. 217, 300 (2018)

    Article  Google Scholar 

  17. D. Berardan, A.K. Meena, S. Franger, C. Herrero, N. Dragoe, J. Alloys. Compd. 704, 693–700 (2017)

    Article  CAS  Google Scholar 

  18. A. Sarkar, L. Velasco, D.I. Wang, Q. Wang, G. Talasila, L. Biasi, C. Kübel, T. Brezesinski, S.S.B. Hattacharya, H. Hahn, B. Breitung, Nat. Commun. 9, 3400 (2018)

    Article  Google Scholar 

  19. Z. Rak, C.M. Rost, M. Lim, P. Sarker, C. Toher, S. Curtarolo, J.P. Maria, D.W.J. Brenner, Appl. Phys 120(9), 095105 (2016)

    Article  Google Scholar 

  20. H. Seyama, M.J. Soma, Chem. Soc. Faraday. Trans. 80(1), 237–248 (1984)

    Article  CAS  Google Scholar 

  21. V.I. Nefedov, Y.V. Salyn, G. Leonhardt, R.J. Scheibe, Electron. Spectrosc. Relat. Phenom. 10(1), 21–31 (1977)

    Google Scholar 

  22. M.H. Hsieh, M.H. Tsai, W.J. Shen, J.W. Yeh, Surf. Coat. Technol. 221, 118–123 (2013)

    Article  CAS  Google Scholar 

  23. V.I. Nefedov, M.N. Firsov, I.S. Shaplygin, J. Electron. Spectrosc. Relat. Phenom. 26(1), 65–78 (1982)

    Article  CAS  Google Scholar 

  24. K.S. Kim, N. Winograd, Surf. Sci. 43(2), 625–643 (1974)

    Article  CAS  Google Scholar 

  25. C.V. Schenck, J.G. Dillard, J.W. Murray, J. Colloid Interface Sci. 95(2), 398–409 (1983)

    Article  CAS  Google Scholar 

  26. A. Sarkar, R. Djenadic, D. Wang, C. Hein, R. Kautenburger, O. Clemens, H. Hahn, J. Eur. Ceram. Soc. 38(5), 2318–2327 (2018)

    Article  CAS  Google Scholar 

  27. C.M. Rost, Z. Rak, D.W. Brenner, J.P. Maria, J. Am. Ceram. Soc 100(6), 2732–2738 (2017)

    Article  CAS  Google Scholar 

  28. L. Yv, J. Wang, X. Li, L. Dai, Z. Shao, Ionics 27(9), 3769–3776 (2018)

    Article  Google Scholar 

Download references

Funding

China National Petroleum Corporation Petrochemical Research Institute Project (2021210207000265).

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft preparation: LY; Conceptualization and Writing—review and editing: JW; Funding acquisition: XW; Methodology: ZS; Formal analysis and investigation: JS, JT.

Corresponding authors

Correspondence to Jing Wang or Xiaohua Wang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 268 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yv, L., Wang, J., Wang, X. et al. Effects of high-entropy carbonate precursors on the electrochemical properties of NaCl-based high-entropy ceramics as anode materials. J Mater Sci: Mater Electron 34, 1227 (2023). https://doi.org/10.1007/s10854-023-10602-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10602-8

Navigation