Skip to main content
Log in

Enhanced electrochemical performance of Na0.9Li0.1Mn0.9O2 by MgO coating for sodium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

O3-Na0.9Li0.1Mn0.9O2/MgO compounds were synthesized as cathode materials for sodium-ion batteries by high-temperature solid-state and wet chemical methods. The effects of different MgO coating amounts on the crystal structure, surface morphology, and electrochemical properties of O3-Na0.9Li0.1Mn0.9O2 materials were investigated. The results showed that the appropriate amount of MgO coating had a positive effect on the cyclic and rate performance. This is attributed to the fact that the MgO layer inhibits harmful side reactions of the electrode material with the electrolyte, which improves structural stability and reduces interfacial transport resistance. Meanwhile, the doped Mg2+ can effectively inhibit the irreversible phase transition. Particularly, the sample of Na0.9Li0.1Mn0.9O2 coated with 2 wt% MgO exhibits high initial discharge specific capacity of 164.9 mAh/g at 0.1C and maintains 83.7% capacity retention after 100 cycles at 0.1C, suggesting enhanced electrochemical performance. Therefore, the surface modification of the material by MgO provides a new strategy for designing high-rate cathode materials for SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available on reasonable request. All data and related metadata underlying the findings reported in a submitted manuscript should be deposited in an appropriate public repository, unless already provided as part of the submitted article.

References

  1. S. Zhong, H. Liu, D. Wei, J. Hu, H. Zhang, H. Hou, M. Peng, G. Zhang, H. Duan, Long-aspect-ratio N-rich carbon nanotubes as anode material for sodium and lithium ion batteries. Chem. Eng. J. 395, 125054–125063 (2020)

    Article  CAS  Google Scholar 

  2. X. Liu, L. Sun, N. Hung Vu, D. Thi Hai Linh, P. Thi Dien, L. Thi Hoa, D. Thi Lien, H. Xuan Nang, V.-D. Dao, Synthesis of LiFePO4/carbon/graphene for high-performance Li-ion battery. J. Electroanal. Chem. 932, 117205–117210 (2023)

    Article  CAS  Google Scholar 

  3. J. Xiao, X. Li, K. Tang, D. Wang, M. Long, H. Gao, W. Chen, C. Liu, H. Liu, G. Wang, Recent progress of emerging cathode materials for sodium ion batteries. Mater. Chem. Front. 5, 3735–3764 (2021)

    Article  CAS  Google Scholar 

  4. Z.-X. Huang, Z.-Y. Gu, Y.-L. Heng, E. Huixiang Ang, H.-B. Geng, X.-L. Wu, Advanced layered oxide cathodes for sodium/potassium-ion batteries: development, challenges and prospects. Chem. Eng. J. 452, 139438–139460 (2023)

    Article  CAS  Google Scholar 

  5. Q. Liu, W. Zheng, G. Liu, J. Hu, X. Zhang, N. Han, Z. Wang, J. Luo, J. Fransaer, Z. Lu, Realizing high-performance cathodes with cationic and anionic redox reactions in high-sodium-content P2-type oxides for sodium-ion batteries. ACS Appl. Mater. Interfaces 15, 9324–9330 (2023)

    Article  CAS  Google Scholar 

  6. F. Wei, Q. Zhang, P. Zhang, W. Tian, K. Dai, L. Zhang, J. Mao, G. Shao, Review—research progress on layered transition metal oxide cathode materials for sodium ion batteries. J. Electrochem. Soc. 168, 050524–050540 (2021)

    Article  CAS  Google Scholar 

  7. H. Zhu, Z. Yao, H. Zhu, Y. Huang, J. Zhang, C.C. Li, K.M. Wiaderek, Y. Ren, C.J. Sun, H. Zhou, L. Fan, Y. Chen, H. Xia, L. Gu, S. Lan, Q. Liu, Unblocking oxygen charge compensation for stabilized high-voltage structure in P2-type sodium-ion cathode. Adv. Sci. (Weinh) 9, 2200498–2200510 (2022)

    Article  CAS  PubMed  Google Scholar 

  8. P. Zhou, Z. Che, J. Liu, J. Zhou, X. Wu, J. Weng, J. Zhao, H. Cao, J. Zhou, F. Cheng, High-entropy P2/O3 biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries. Energy Storage Mater. 57, 618–627 (2023)

    Article  Google Scholar 

  9. Z.-Y. Li, J. Zhang, R. Gao, H. Zhang, L. Zheng, Z. Hu, X. Liu, Li-substituted Co-free layered P2/O3 biphasic Na0.67Mn0.55Ni0.25Ti0.2–xLixO2 as high-rate-capability cathode materials for sodium ion batteries. J. Phys. Chem. C 120, 9007–9016 (2016)

    Article  CAS  Google Scholar 

  10. Z. Liu, C. Zhou, J. Liu, L. Yang, J. Liu, M. Zhu, Phase tuning of P2/O3-type layered oxide cathode for sodium ion batteries via a simple Li/F co-doping route. Chem. Eng. J. 431, 134273–134282 (2022)

    Article  CAS  Google Scholar 

  11. C. Li, C. Zhao, B. Hu, W. Tong, M. Shen, B. Hu, Unraveling the critical role of Ti substitution in P2-NaxLiyMn1–yO2 cathodes for highly reversible oxygen redox chemistry. Chem. Mater. 32, 1054–1063 (2020)

    Article  CAS  Google Scholar 

  12. J.E. Wang, W.H. Han, K.J. Chang, Y.H. Jung, D.K. Kim, New insight into Na intercalation with Li substitution on alkali site and high performance of O3-type layered cathode material for sodium ion batteries. J. Mater. Chem. A 6, 22731–22740 (2018)

    Article  CAS  Google Scholar 

  13. E. Lee, J. Lu, Y. Ren, X. Luo, X. Zhang, J. Wen, D. Miller, A. DeWahl, S. Hackney, B. Key, D. Kim, M.D. Slater, C.S. Johnson, Layered P2/O3 intergrowth cathode: toward high power Na-ion batteries. Adv. Energy Mater. 4, 1400458–1400467 (2014)

    Article  Google Scholar 

  14. J.-Y. Hwang, T.-Y. Yu, Y.-K. Sun, Simultaneous MgO coating and Mg doping of Na [Ni0.5Mn0.5]O2 cathode: facile and customizable approach to high-voltage sodium-ion batteries. J. Mater. Chem. A 6, 16854–16862 (2018)

    Article  CAS  Google Scholar 

  15. Y. Zhou, L. Li, Y. Wu, H. Xie, Recent advances in surface coatings of layered cathode materials for high-performance sodium-ion batteries. Eur. J. Inorg. Chem. 26, e202200685 (2023)

    Article  CAS  Google Scholar 

  16. D. Lu, Z.J. Yao, Y.Q. Li, Y. Zhong, X.L. Wang, D. Xie, X.H. Xia, C.D. Gu, J.P. Tu, Sodium-rich manganese oxide porous microcubes with polypyrrole coating as a superior cathode for sodium ion full batteries. J. Colloid Interface Sci. 565, 218–226 (2020)

    Article  CAS  PubMed  Google Scholar 

  17. Y. Liu, X. Fang, A. Zhang, C. Shen, Q. Liu, H.A. Enaya, C. Zhou, Layered P2-Na2/3 [Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: the capacity decay mechanism and Al2O3 surface modification. Nano Energy 27, 27–34 (2016)

    Article  CAS  Google Scholar 

  18. Y. Yu, W. Kong, Q. Li, D. Ning, G. Schuck, G. Schumacher, C. Su, X. Liu, Understanding the multiple effects of TiO2 coating on NaMn0.33Fe0.33Ni0.33O2 cathode material for Na-ion batteries. ACS Appl. Energy Mater. 3, 933–942 (2020)

    Article  CAS  Google Scholar 

  19. H.V. Ramasamy, K. Kaliyappan, R. Thangavel, V. Aravindan, K. Kang, D.U. Kim, Y. Park, X. Sun, Y.-S. Lee, Cu-doped P2-Na0.5Ni0.33Mn0.67O2 encapsulated with MgO as a novel high voltage cathode with enhanced Na-storage properties. J. Mater. Chem. A 5, 8408–8415 (2017)

    Article  CAS  Google Scholar 

  20. Y. Yang, R. Dang, K. Wu, Q. Li, N. Li, X. Xiao, Z. Hu, Semiconductor material ZnO-coated P2-type Na2/3Ni1/3Mn2/3O2 cathode materials for sodium-ion batteries with superior electrochemical performance. J. Phys. Chem. C 124, 1780–1787 (2019)

    Article  Google Scholar 

  21. S. Bao, S.-H. Luo, J.-L. Lu, Preparation and optimization of ZrO2 modified P2-type Na2/3Ni1/6Co1/6Mn2/3O2 with enhanced electrochemical performance as cathode for sodium ion batteries. Ceram. Int. 46, 16080–16087 (2020)

    Article  CAS  Google Scholar 

  22. Y. Li, Q. Shi, X. Yin, J. Wang, J. Wang, Y. Zhao, J. Zhang, Construction nasicon-type NaTi2(PO4)3 nanoshell on the surface of P2-type Na0.67Co0.2Mn0.8O2 cathode for superior room/low-temperature sodium storage. Chem. Eng. J. 402, 126181–126189 (2020)

    Article  CAS  Google Scholar 

  23. Y. Zhang, Y. Pei, W. Liu, S. Zhang, J. Xie, J. Xia, S. Nie, L. Liu, X. Wang, AlPO4-coated P2-type hexagonal Na0.7MnO2.05 as high stability cathode for sodium ion battery. Chem. Eng. J. 382, 122697–122707 (2020)

    Article  CAS  Google Scholar 

  24. R. Mishra, S.K. Singh, H. Gupta, N. Srivastava, D. Meghnani, R.K. Tiwari, A. Patel, A. Tiwari, V.K. Tiwari, R.K. Singh, Surface modification of nano Na [Ni0.60Mn0.35Co0.05]O2 cathode material by dextran functionalized RGO via hydrothermal treatment for high performance sodium batteries. Appl. Surf. Sci. 535, 147695–147706 (2021)

    Article  CAS  Google Scholar 

  25. J. Xia, W. Wu, K. Fang, X. Wu, Enhancing the interfacial stability of P2-type cathodes by polydopamine-derived carbon coating for achieving performance improvement. Carbon 157, 693–702 (2020)

    Article  CAS  Google Scholar 

  26. Y. Liu, D. Wang, J. Liu, Y. Liu, S. Gao, Q. Hu, Z. Wu, X. Chen, B. Zhong, X. Guo, Surface modification of layer-tunnel hybrid Na0.6MnO2 cathode with open tunnel structure Na2Ti6O13. J. Alloys Compd. 849, 156441–156449 (2020)

    Article  CAS  Google Scholar 

  27. R. Dang, M. Chen, Q. Li, K. Wu, Y.L. Lee, Z. Hu, X. Xiao, Na+-conductive Na2Ti3O7-modified P2-type Na2/3Ni1/3Mn2/3O2 via a smart in situ coating approach: suppressing Na+/vacancy ordering and P2-O2 phase transition. ACS Appl. Mater. Interfaces 11, 856–864 (2019)

    Article  CAS  PubMed  Google Scholar 

  28. Y. Liu, J. Yang, B. Guo, X. Han, Q. Yuan, Q. Fu, H. Lin, G. Liu, M. Xu, Enhanced electrochemical performance of Na0.5Ni0.25Mn0.75O2 micro-sheets at 3.8 V for Na-ion batteries with nanosized-thin AlF3 coating. Nanoscale 10, 12625–12630 (2018)

    Article  CAS  PubMed  Google Scholar 

  29. W. Kong, H. Wang, L. Sun, C. Su, X. Liu, Understanding the synergic roles of MgO coating on the cycling and rate performance of Na0.67Mn0.5Fe0.5O2 cathode. Appl. Surf. Sci. 497, 143814–143824 (2019)

    Article  CAS  Google Scholar 

  30. M. Leng, J. Bi, W. Wang, Z. Xing, W. Yan, X. Gao, J. Wang, R. Liu, Ultrathin MgO coating on fabricated O3–NaNi0.45Mn0.3Ti0.2Zr0.05O2 composite cathode via magnetron sputtering for enhanced kinetic and durable sodium-ion batteries. J. Alloys Compd. 855, 157533–157545 (2021)

    Article  CAS  Google Scholar 

  31. L. Wu, S. Guo, X. Pu, H. Yue, H. Li, P. Li, W. Li, K. Cai, W. Ding, L. Li, Y. Zhang, W. Fa, C. Yang, Z. Zheng, W. He, Y. Cao, Na0.91MnO2 with an extended layer structure and excellent pseudocapacitive behavior as a cathode material for sodium-ion batteries. ACS Appl. Energy Mater. 5, 4505–4512 (2022)

    Article  CAS  Google Scholar 

  32. A. Kulka, C. Marino, K. Walczak, C. Borca, C. Bolli, P. Novák, C. Villevieille, Influence of Na/Mn arrangements and P2/P′2 phase ratio on the electrochemical performance of NaxMnO2 cathodes for sodium-ion batteries. J. Mater. Chem. A 8, 6022–6033 (2020)

    Article  CAS  Google Scholar 

  33. Q. Zhao, Z. Guo, L. Wang, Y. Wu, F.K. Butt, Y. Zhu, X. Xu, X. Ma, C. Cao, Mo-modified P2-type manganese oxide nanoplates with an oriented stacking structure and exposed 010 active facets as a long-life sodium-ion battery cathode. ACS Appl. Mater. Interfaces 11, 30819–30827 (2019)

    Article  CAS  PubMed  Google Scholar 

  34. Q. Deng, F. Zheng, W. Zhong, Q. Pan, Y. Liu, Y. Li, Y. Li, J. Hu, C. Yang, M. Liu, Nanoscale surface modification of P2-type Na0.65 [Mn0.70Ni0.16Co0.14]O2 cathode material for high-performance sodium-ion batteries. Chem. Eng. J. 404, 126446–126456 (2021)

    Article  CAS  Google Scholar 

  35. L. Yang, X. Li, X. Ma, S. Xiong, P. Liu, Y. Tang, S. Cheng, Y.-Y. Hu, M. Liu, H. Chen, Design of high-performance cathode materials with single-phase pathway for sodium ion batteries: a study on P2-Nax(LiyMn1y)O2 compounds. J. Power Sources 381, 171–180 (2018)

    Article  CAS  Google Scholar 

  36. W.-J. Shi, Y.-W. Yan, C. Chi, X.-T. Ma, D. Zhang, S.-D. Xu, L. Chen, X.-M. Wang, S.-B. Liu, Fluorine anion doped Na0.44MnO2 with layer-tunnel hybrid structure as advanced cathode for sodium ion batteries. J. Power Sources 427, 129–137 (2019)

    Article  CAS  Google Scholar 

  37. T.-T. Wei, N. Zhang, Y.-S. Zhao, Y.-R. Zhu, T.-F. Yi, Sodium-deficient O3–Na0.75Fe0.5xCux Mn0.5O2 as high-performance cathode materials of sodium-ion batteries. Composites B 238, 109912–109921 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the National Natural Science Foundation of China (No. 61504080 and No. 61704107), the Young Eastern Scholar (QD2016012) of Shanghai Municipal Education Commission, and Shanghai Pujiang Program.

Funding

This study was supported by National Natural Science Foundation of China (Grant No. 61504080).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Xuyan Liu: conceptualization, methodology, investigation, writing original draft. Jianjun Zhou: writing—review & editing, data curation, investigation, formal analysis. Kexin Huang: writing—review & editing, supervision. Qiang Li and Yijie Xia: writing—review & editing, supervision.

Corresponding author

Correspondence to Xuyan Liu.

Ethics declarations

Competing interests

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work; there is no professional or other personal interest of any nature or kind in any product, service, and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled, “Enhanced electrochemical performance of Na0.9Li0.1Mn0.9O2 by MgO coating for sodium-ion batteries.” The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhou, J., Huang, K. et al. Enhanced electrochemical performance of Na0.9Li0.1Mn0.9O2 by MgO coating for sodium-ion batteries. J Mater Sci: Mater Electron 35, 1003 (2024). https://doi.org/10.1007/s10854-024-12745-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12745-8

Navigation