Skip to main content

Advertisement

Log in

Magneto-dielectric properties of Ni0.25Cu0.25Zn0.50Fe2O4–BaTiO3 and its application as substrate of microstrip patch antennas

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study explores the properties and potential of magneto-dielectric (MD) material Ni0.25Cu0.25Zn0.50Fe2O4–BaTiO3 as an antenna substrate for miniaturization and bandwidth enhancement. The MD material was synthesized using a solid-state method and different amounts of BaTiO3 (0, 5, 10, 15 and 20%) were added to improve its relative permittivity. Various investigations were carried out to analyze the crystallographic structure, microstructure, magnetic properties, permittivity, permeability, and losses of the samples at microwave frequencies. Results show that the MD composite with 5% BaTiO3 achieved a relative permittivity of 12.5 and a permeability of 2.9 at 0.7 GHz has enhanced the antenna's operating bandwidth with a fractional bandwidth of 61.1% and directivity of 3.1 dBi. The MD material with 20% BaTiO3 showed potential as an antenna substrate for miniaturization, with a relative permittivity and permeability of 17.1 and 1.9, respectively. It also displayed better gain (− 8.9 dBi) and radiation efficiency (8%) compared to the antenna with 5% \({\text{BaTiO}}_{{3}}\) (with a gain of − 14.4 dBi and radiation efficiency of 1.8%) as an antenna substrate. The findings of this study suggest that MD materials have significant potential as antenna substrates for miniaturization and bandwidth enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The authors declare that data supporting the findings of this study are available within the article.

References

  1. K. Mahendran, Microstrip patch antenna enhancement techniques: a survey. Int. J. Eng. Appl. Sci. Technol. 4(11), 245–249 (2020)

    Google Scholar 

  2. B. Huang, M. Li, W. Lin, J. Zhang, G. Zhang, F. Wu, A compact slotted patch hybrid-mode antenna for Sub-6 GHz communication. Int. J. Antennas Propag (2020). https://doi.org/10.1155/2020/8262361

    Article  Google Scholar 

  3. S.H. Wi, Y.S. Lee, J.G. Yook, Wideband microstrip patch antenna with U-shaped parasitic elements. IEEE Trans. Antennas Propag. 55(4), 1196–1199 (2007). https://doi.org/10.1109/TAP.2007.893427

    Article  Google Scholar 

  4. S. Jam, M. Simruni, Performance enhancement of a compact wideband patch antenna array using EBG structures. AEU - Int. J. Electron. Commun. 89, 42–55 (2018). https://doi.org/10.1016/j.aeue.2018.03.026

    Article  Google Scholar 

  5. K. Jairath, N. Singh, V. Jagota, M. Shabaz, Compact ultrawide band metamaterial-inspired split ring resonator structure loaded band notched antenna. Math. Probl. Eng. (2021). https://doi.org/10.1155/2021/5174455

    Article  Google Scholar 

  6. A. Saini, K. Rana, A. Thakur, P. Thakur, J.L. Mattei, Low loss composite nano ferrite with matching permittivity and permeability in UHF band. Mater. Res. Bull. (2015). https://doi.org/10.1016/j.materresbull.2015.12.002

    Article  Google Scholar 

  7. H. Chen, D. Liang, W. Li, C. Pang, Magnetic materials for mobile communication antennas substrate application. IOP Conf. Ser. Mater. Sci. Eng. (2017). https://doi.org/10.1088/1757-899X/265/1/012005

    Article  Google Scholar 

  8. X. Yaoa, Y. Yang, J.-P. Zhou, X.-M. Chen, P.-F. Liang, C. You, Magnetic field and polarization effects on the permeability and permittivity of (1–x)Ni0.4Zn0.6Fe2O4+xPb(Zr0.53Ti0.47)O3 composites at high frequency. J. Phys. D. Appl. Phys. (2018). https://doi.org/10.1088/1361-6463/aaa062

    Article  Google Scholar 

  9. G. Gan et al., Influence of microstructure on magnetic and dielectric performance of Bi 2 O 3 -doped Mg[sbnd]Cd ferrites for high frequency antennas. Ceram. Int. 45(9), 12035–12040 (2019). https://doi.org/10.1016/j.ceramint.2019.03.098

    Article  CAS  Google Scholar 

  10. S.M. Manea, S.A. Pawara, D.S. Patila, S.B. Kulkarnib, N.T. Tayadec, Magnetoelectric, magnetodielectric effect and dielectric, magnetic properties of microwave-sintered lead-free x(Co0.9Ni0.1Fe2O4)-(1–x) [0.5(Ba0.7Ca0.3TiO3)-05(BaZr0.2Ti0.8O3)] particulate multiferroic composite Sagar. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.10.038

    Article  Google Scholar 

  11. S. Sharma, M.P.C.J.M. Siqueiros, O.R. Herrera, V.E.A.R.K. Dwivedi, Investigation of electrical, magneto-dielectric and transport properties of multiferroic (1–x) BiFeO3–(x) BaSr0.7Ti0.3O3 solid solutions. J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01058-w

    Article  Google Scholar 

  12. A. Saini, A. Thakur, P. Thakur, Matching permeability and permittivity of Ni0.5Zn0.3Co0.2In0.1Fe1.9O4 ferrite for substrate of large bandwidth miniaturized antenna. J. Mater. Sci. Mater. Electron. 27(3), 2816–2823 (2016). https://doi.org/10.1007/s10854-015-4095-8

    Article  CAS  Google Scholar 

  13. B. Thangjam, I. Soibam, Comparative study of structural, electrical, and magnetic behaviour of Ni-Cu-Zn nanoferrites sintered by microwave and conventional techniques. J. Nanomater (2017). https://doi.org/10.1155/2017/5756197

    Article  Google Scholar 

  14. H. Su, X. Tang, H. Zhang, Y. Jing, F. Bai, Low-loss magneto-dielectric materials: approaches and developments. J. Electron. Mater. 43(2), 299–307 (2014). https://doi.org/10.1007/s11664-013-2831-5

    Article  CAS  Google Scholar 

  15. K. Pubby, SR Bhongale, PN Vasambekar, SB Narang, Ni0.1Co0.9Fe2O4 spinel ferrite as a promising magneto-dielectric substrate for X-band Microstrip Patch Antenna, 3rd Int. Conf. Electron. Mater. Eng. Nano-Technology. (2019). https://doi.org/10.1109/IEMENTech48150.2019.8981054

  16. Z. Zheng, X. Wu, A Miniaturized UHF vivaldi antenna with tailored radiation performance based on magneto-dielectric ferrite materials. IEEE Trans. Magn. 56(3), 5 (2020). https://doi.org/10.1109/TMAG.2019.2962030

    Article  Google Scholar 

  17. M.P. Reddy, I.G. Kim, D.S. Yoo, W. Madhuri, “Characterization and electromagnetic studies on NiZn and NiCuZn ferrites prepared by microwave sintering technique. Mater. Sci. Appl. 2012(September), 628–632 (2012). https://doi.org/10.4236/msa.2012.39091

    Article  CAS  Google Scholar 

  18. Su. Hua, H. Zhang, X. Tang, Y. Jing, Z. Zhong, Dielectric and magnetic properties of low-temperature fired NiCuZn – BaTiO 3 composites. J. Magn. Magn. Mater. 321(18), 2763–2766 (2009). https://doi.org/10.1016/j.jmmm.2009.04.018

    Article  CAS  Google Scholar 

  19. K. Sadhana, K. Praveena, S. Bharadwaj, S.R. Murthy, Microwave-Hydrothermal synthesis of BaTiO3 +NiCuZnFe2O4 nanocomposites. J. Alloy. Compd. 472, 484–488 (2009). https://doi.org/10.1016/j.jallcom.2008.04.104

    Article  CAS  Google Scholar 

  20. A.S. Dzunuzovic, M.M. Vijatovic Petrovic, J.D. Bobic, N.I. Ilic, M. Ivanov, R. Grigalaitis, J. Banys, B.D. Stojanovic, Magneto-electric properties of xNi0.7Zn0.3Fe2O4 – (1–x)BaTiO3 multiferroic composites. Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.09.229

    Article  Google Scholar 

  21. B.H. Guan, H. Soleimani, N. Yahya, N.R.A. Latiff, Phase evolution and crystallite size of Ni0.25Zn0.75Fe2O4 at different calcination temperatures. Adv. Mater. Res. 925(3), 290–294 (2014). https://doi.org/10.4028/www.scientific.net/AMR.925.290

    Article  CAS  Google Scholar 

  22. J. Massoudi et al., Magnetic and spectroscopic properties of Ni-Zn-Al ferrite spinel: from the nanoscale to microscale. RSC Adv. 10(57), 34556–34580 (2020). https://doi.org/10.1039/d0ra05522k

    Article  CAS  Google Scholar 

  23. J. Azadmanjiri, S.A. Seyyedbrahimi, H.K. Salehani, Magnetic properties of nanosize NiFe2O4 particles synthesized by sol-gel auto combustion method. Ceram. Int. 33(8), 1623–1625 (2007). https://doi.org/10.1016/j.ceramint.2006.05.007

    Article  CAS  Google Scholar 

  24. M.M. Vijatović Petrović, R. Grigalaitis, A. Dzunuzovic, J.D. Bobić, B.D. Stojanović, R. Šalaševičius, J. Banys, Positive influence of Sb doping on properties of di-phase multiferroics based on barium titanate and nickel ferrite. J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.03.381

    Article  Google Scholar 

  25. Q. Zhaoa, H. Zhang, J. Li, Xu. Fang, Y. Liao, C. Liu, Su. Hua, Low-temperature sintering synthesis and electromagnetic properties of NiCuZn/BaTiO3 composite materials. J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2019.01.309

    Article  Google Scholar 

  26. M.D. Rather, R. Samad, N. Hassan, B. Want, Magnetodielectric effect in rare earth doped BaTiO3-CoFe2O4 multiferroic composites. J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2019.04.244

    Article  Google Scholar 

  27. N.S. Rogado, J. Li, A.W. Sleight, M.A. Subramanian, Magnetocapacitance and magnetoresistance near room temperature in a ferromagnetic semiconductor: La2NiMnO6. Adv. Mater. Res. (2005). https://doi.org/10.1002/adma.200500737

    Article  Google Scholar 

  28. X. Yao, J.P. Zhou, X.L. Zhang, X.M. Chen, Magnetodielectric mechanism and application of magnetoelectric composites. J. Magn. Magn. Mater. 550, 169099 (2022). https://doi.org/10.1016/j.jmmm.2022.169099

    Article  CAS  Google Scholar 

  29. Y.G. Adhiyoga, S.F. Rahman, C. Apriono, E.T. Rahardjo, Magneto-dielectric properties of PDMS—magnetite composite as a candidate for compact microstrip antennas in the C-band 5G frequency. J. Mater. Sci. Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-05802-z

    Article  Google Scholar 

  30. T. Nakamura, Snoek’ s limit in high-frequency permeability of polycrystalline Ni–Zn, Mg–Zn, and Ni–Zn–Cu spinel ferrites. J. Appl. Phys. 88(10), 6 (2000). https://doi.org/10.1063/1.373666

    Article  Google Scholar 

  31. C.A. Balanis, Antenna theory: analysis and design, 4th edn. (Wiley, Hoboken, 2016)

    Google Scholar 

  32. R. Przesmycki, M. Bugaj, L. Nowosielski, Broadband microstrip antenna for 5g wireless systems operating at 28 GHz. Electronics MDPI (2021). https://doi.org/10.3390/electronics10010001

    Article  Google Scholar 

  33. A. Saini, A. Thakur, P. Thakur, Miniaturization and bandwidth enhancement of a microstrip patch antenna using magneto-dielectric materials for proximity fuze application. J. Electron. Mater. 46(3), 1902–1907 (2017). https://doi.org/10.1007/s11664-016-5256-0

    Article  CAS  Google Scholar 

  34. R. Anlin Golda, A. Marikani, E. John Alex, Development of novel—Bi (1–x) Sm x FeO3 based polymer—ceramic nanocomposite for microwave application. J. Mater. Sci. Mater. Electron (2019). https://doi.org/10.1007/s10854-019-02526-z

    Article  Google Scholar 

Download references

Funding

This work was supported by Ministry of Higher Education (MOHE) through Fundamental Research Grant Scheme (FRGS/1/2019/TK04/UTHM/02/7).

Author information

Authors and Affiliations

Authors

Contributions

FHI: data curation, writing—original draft preparation, methodology, software, validation, SKY: supervision, writing, reviewing and editing, validation, FESA: supervision, visualization, SHD: supervision, conceptualization, VN: discussion about the results, reviewing, AYIA: discussion and reviewing.

Corresponding author

Correspondence to F. H. Ikhsan.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikhsan, F.H., Yee, S.K., Esa, F. et al. Magneto-dielectric properties of Ni0.25Cu0.25Zn0.50Fe2O4–BaTiO3 and its application as substrate of microstrip patch antennas. J Mater Sci: Mater Electron 34, 1251 (2023). https://doi.org/10.1007/s10854-023-10595-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10595-4

Navigation