Skip to main content

Hybrid Material-Based Dual-Band Yagi-Uda Antenna with Enhanced Gain for the Ku-Band Applications

  • Chapter
  • First Online:
Intelligent Computing and Communication Systems

Part of the book series: Algorithms for Intelligent Systems ((AIS))

Abstract

In this work, we propose a hybrid material-based Yagi-Uda antenna with dual-band response. The proposed antenna consists of three-driven elements made up of copper, lead and silicon material placed according to the decreasing order of conductivity. Its dipole is excited using the microstrip feedline connected through a PEC vias. The antenna operates at 15.5 and 16.1 GHz resonant frequencies having 1.03% and 2.05% of −10 dB impedance bandwidth for the lower and upper bands, respectively. The dipole of the antenna excites higher order \({\text{TM}}_{16}\) and \({\text{TM}}_{26}\) modes at the resonant frequencies of the passbands. The antenna structure provides peak gain of 9.52 dBi and 8.1 dBi at lower and upper bands, respectively. The proposed antenna may find potential utilization in Ku-band applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang C, Chen S, Yang Y, Hu F, Liu F, Wu J (2018) Literature review on wireless sensing-Wi-Fi signal-based recognition of human activities. Tsinghua Sci Technol 23:203–22. https://doi.org/10.23919/TST.2018.8329114

  2. Chen M, Chen CC (2013) A compact dual-band GPS antenna design. IEEE Antennas Wirel Propag Lett 12:245–248. https://doi.org/10.1109/LAWP.2013.2247972

    Article  Google Scholar 

  3. Zhang J, Wu W, Fang DG (2011) Single RF channel digital beamforming multibeam antenna array based on time sequence phase weighting. IEEE Antennas Wirel Propag Lett 10:514–516. https://doi.org/10.1109/LAWP.2011.2157073

    Article  Google Scholar 

  4. Ito T, Kasami H (2015) External millimeter-wave antenna using spatial coupling for antenna in IC package. In: IEEE international symposium on antennas and propagation & USNC/URSI national radio science meeting 2015, pp 2033–2034. https://doi.org/10.1109/APS.2015.7305406

  5. Lu J, Ireland D, Schlub R (2005) Dielectric embedded ESPAR (DE-ESPAR) antenna array for wireless communications. IEEE Trans Antennas Propag 53:2437–2443. https://doi.org/10.1109/TAP.2005.852517

    Article  Google Scholar 

  6. Cho K, Hong S (2012) Design of a VHF/UHF/L-band low-power active antenna for mobile handsets. IEEE Antennas Wirel Propag Lett 11:45–48. https://doi.org/10.1109/LAWP.2011.2181149

    Article  Google Scholar 

  7. Dai X, Wang Z, Liang C, Chen X, Wang Li, et al (2013) Multiband and dual-polarized omnidirectional antenna for 2G/3G/LTE application. IEEE Antennas Wirel Prop Lett 12:1492–1495. https://doi.org/10.1109/LAWP.2013.2289743

  8. Todosiciuc A, Nicorici A, Condrea E, Warchulska J (2012) Electrical properties of lead telluride single crystals doped with Gd. In: Proceedings on international semiconductor conference CAS, vol 2, pp 269–72. https://doi.org/10.1109/SMICND.2012.6400788

  9. Wu JW, Wang CJ, Jou CF (2009) Method of suppressing the side lobe of a tapered short leaky wave antenna. IEEE Antennas Wirel Propag Lett 8:1146–1149. https://doi.org/10.1109/LAWP.2009.2034474

    Article  Google Scholar 

  10. Alhalabi RA, Rebeiz GM (2010) Differentially-fed millimeter-wave yagi-uda antennas with folded dipole feed. IEEE Trans Antennas Propag 58:966–969. https://doi.org/10.1109/TAP.2009.2039320

    Article  Google Scholar 

  11. Zhai G (2015) Gain enhancement of printed log-periodic dipole array antenna using an elliptical patch. In: Proceedings on 2015 IEEE 4th Asia-Pacific conference antennas propagation, APCAP 2015, vol 62, pp 54–55. https://doi.org/10.1109/APCAP.2015.7374268

  12. Basit MA, Wen G, Ping W (2016) Wide-band CPW-fed slot antenna with parasitic directors for end-fire radiation. IET Microwaves Antennas Propag 10:1734–1739. https://doi.org/10.1049/iet-map.2016.0346

    Article  Google Scholar 

  13. Rodriguez-Ulibarri P, Bertuch T (2016) Microstrip-fed complementary Yagi-Uda antenna. IET Microwaves Antennas Propag 10:926–931. https://doi.org/10.1049/iet-map.2015.0734

    Article  Google Scholar 

  14. Honma N, Seki T, Nishikawa K (2008) Compact planar four-sector antenna comprising microstrip Yagi-Uda arrays in a square configuration. IEEE Antennas Wirel Propag Lett 7:596–598. https://doi.org/10.1109/LAWP.2008.2000874

    Article  Google Scholar 

  15. Perez-garrido C, Prieto M (2004) Modified aperture coupled microstrip antenna. IEEE Trans Antennas Propag 52:3397–3401

    Article  Google Scholar 

  16. Thiel DV (1993) An experimental investigation behaviour of the staked antenna for surface electrical field measurement. In: Proceedings of IEEE antennas and propagation society international symposium, pp 1312–1315. https://doi.org/10.1109/APS.1993.385435

  17. Hu W, Yin YZ, Yang X, Fei P (2013) Compact multiresonator-loaded planar antenna for multiband operation. IEEE Trans Antennas Propag 61:2838–2841. https://doi.org/10.1109/TAP.2013.2242819

    Article  Google Scholar 

  18. Huang HC, Lu JC, Hsu P (2015) A compact dual-band printed Yagi-Uda antenna for GNSS and CMMB applications. IEEE Trans Antennas Propag 63:2342–2348. https://doi.org/10.1109/TAP.2015.2406914

    Article  Google Scholar 

  19. Tan BK, Withington S, Yassin G (2016) A Compact microstrip-fed planar dual-dipole antenna for broadband applications. IEEE Antennas Wirel Propag Lett 15:593–596. https://doi.org/10.1109/LAWP.2015.2462114

    Article  Google Scholar 

  20. Yang XS, Wang BZ, Wu W, Xiao S (2007) Yagi patch antenna with dual-band and pattern reconfigurable characteristics. IEEE Antennas Wirel Propag Lett 6:168–171. https://doi.org/10.1109/LAWP.2007.895292

    Article  Google Scholar 

  21. Lim S, Iskander MF (2009) Design of a dual-band, compact yagi antenna over an EBG ground plane. IEEE Antennas Wirel Propag Lett 8:88–91. https://doi.org/10.1109/LAWP.2008.2011502

    Article  Google Scholar 

  22. Xin Q, Zhang F, Sun B, Zou Y, Liu Q (2010) A novel dual-band Yagi-Uda antenna for wireless communications. In: 2010 9th international symposium on antennas, propagation EM theory, ISAPE 2010, pp 289–92. https://doi.org/10.1109/ISAPE.2010.5696456

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, R., Gotra, S., Pandey, V.S., Singh, B. (2021). Hybrid Material-Based Dual-Band Yagi-Uda Antenna with Enhanced Gain for the Ku-Band Applications. In: Singh, B., Coello Coello, C.A., Jindal, P., Verma, P. (eds) Intelligent Computing and Communication Systems. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-16-1295-4_8

Download citation

Publish with us

Policies and ethics