Skip to main content
Log in

Matching permeability and permittivity of Ni0.5Zn0.3Co0.2In0.1Fe1.9O4 ferrite for substrate of large bandwidth miniaturized antenna

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nickel zinc cobalt indium ferrite of nominal composition Ni0.5Zn0.3Co0.2In0.1Fe1.9O4 was synthesized by a co-precipitation technique. The effect of sintering temperature on structural and electromagnetic properties was studied over the frequency range of 10 MHz to 6 GHz. The crystallite size increases from 45 to 60 nm, with an increase in sintering temperature from 800 to 1000 °C. The relative permeability (μr) and relative permittivity (εr), both varies between 5 and 8 with sintering temperature and remains consistent up to 700 MHz, but ferrimagnetic resonance frequency reduces from 900 to 700 MHz. For sintering temperature of 900 °C, almost matching value of permeability and permittivity equals to 5.5 and 5.3 respectively were obtained up to 700 MHz. The loss tangent are found to be of the order of 10−2 in the same frequency band. Matching values of εr (~5.3) and μr (~5.5) are very effective in proper impedance matching of substrate material with free space. Analysis in High frequency structural simulator verifies that the synthesized magneto-dielectric material based antenna can miniaturize size (~65 %), lowers reflection losses (RL) by 15 %, higher −10 dB RL bandwidth (8–12 %) and higher voltage standing wave ratio bandwidth (9–13 %) at resonant frequency of 450 MHz. The observed matching values also result in higher gain and radiation efficiency. Hence, the excellent electromagnetic properties obtained in our investigation for the suitably sintered Ni0.5Zn0.3Co0.2In0.1Fe1.9O4 ferrite shows a lot of potential to be used as a substrate material in miniaturizing microstrip antenna for futuristic electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. E. Lyshevski. 12th IEEE conference on nanotechnology, (2012), pp. 1–2

  2. M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Science 339, 535–539 (2013)

    Article  Google Scholar 

  3. K.M. Krishnan, IEEE Trans. Magn. 46, 2523–2558 (2010)

    Article  Google Scholar 

  4. T.L. Chang, Y.W. Lee. 7th IEEE conference on nanotechnology, (2007), pp. 656–659

  5. S.E. Lyshevski, Martirosyan, S. Karen. 11th IEEE conference on nanotechnology, (2011), pp. 1252–1256

  6. D.A. Grier, Computer. 39, 8–10 (2006)

    Google Scholar 

  7. R.R. Schaller, IEEE Spectr. 34, 52–59 (1997)

    Article  Google Scholar 

  8. C.A. Balanis, Antenna theory: analysis and design, 3rd edn. (Wiley, India, 2011)

    Google Scholar 

  9. I. Bibyk, R. Romanofsky, E. Wintucky, RF technologies for advancing space communication infrastructure, IEEE Aero. Conference, (2006)

  10. R.C. Hansen, Fundamental limitations in antennas. Proc. IEEE 69, 170–182 (1982)

    Article  Google Scholar 

  11. K.R. Carver, J.W. Mink, IEEE Trans. Antenna Propag. 29, 2–24 (1981)

    Article  Google Scholar 

  12. R. Bancroft, Microstrip and printed Antenna, 2nd edn. (Scitech Publishing, Inc. 2008)

  13. F. Kuroki, Y. Takigawa, S. Kashihara. IEEE symposium on radio and wireless, (2007), pp. 169–172

  14. A. An, T. Yoshimasu, K. Yamaoka, S. Kurachi. 7th international symposium on antennas, propagation and EM theory. (2006), pp. 1–3

  15. L. Byungje, F.J. Harackiewicz, IEEE Trans. Antennas Propag. 50, 1160–1162 (2002)

    Article  Google Scholar 

  16. R.C. Hansen, M. Burke, Microw. Opt. Techno. Letters. 26, 75–78 (2000)

    Article  Google Scholar 

  17. H. Mosallaei, K. Sarabandi, IEEE Trans. Antennas Propag. 52, 1558–1567 (2004)

    Article  Google Scholar 

  18. K. Min, T. Hong, IEEE Asia-Pacific conferences communication, (2006) pp. 1–5

  19. P.M.T. Ikonen, S.A. Tretyakov, Microwave Opt. Technol. Lett. 52, 3131–3134 (2008)

    Article  Google Scholar 

  20. A. Thakur, P. Thakur, J.H. Hsu, Scripta Mater. 64, 205–208 (2011)

    Article  Google Scholar 

  21. A. Thakur, A. Chevalier, J.L. Mattei, P. Queffélec, J. Appl. phys. 108, 014301–0143014 (2010)

    Article  Google Scholar 

  22. A.O. Karilainen, P.M.T. Ikonen, C.R. Simovski, S.A. Tretyakov, A.N. Lagarkov, S.A. Maklakov, K.N. Rozanov, S.N. Starostenko, I.E.T. Microwaves, Antennas Propag. 5, 495–502 (2011)

    Article  Google Scholar 

  23. P. Kumar, J.K. Juneja, C. Prakash, S. Singh, R.K. Shukla, K.K. Raina, Ceram. Int. 40, 2501–2504 (2014)

    Article  Google Scholar 

  24. P. Mathur, A. Thakur, M. Singh, Int. J. Mod. Phys. B 23, 2523–2533 (2009)

    Article  Google Scholar 

  25. P. Mathur, A. Thakur, M. Singh, Phys. Scripta. 77, 045701 (2008)

    Article  Google Scholar 

  26. J.L. Mattei, L. Huitema, P. Queffelec, J.F. Pintos, P. Minard, A. Sharahia, B. Jamnier, F. Ferrero, R. Staraj, D. Souriou, A. Thakur, IEEE Trans. Magn. 47, 3720–3723 (2011)

    Article  Google Scholar 

  27. A. Goldman, Modern ferrite technology, 2nd edn. (Van Nostrand Reinhold, New York, 1990)

    Google Scholar 

  28. U. Ozgur, Y. Alivov, H. Morkoc, J Mater Sci Mater Electron. 20, 789–834 (2009)

    Article  Google Scholar 

  29. V. Voronkov, J. Phys. (IV) France. 7, pp. C1 35–38 (1997)

  30. K. Rana, P. Thakur, P. Sharma, M. Tomar, V. Gupta, A. Thakur, Ceram. Int. 41(3), 4492–4497 (2015)

    Article  Google Scholar 

  31. P. Mathur, A. Thakur, M. Singh, J. Phys. Chem. Solids 69, 187–192 (2008)

    Article  Google Scholar 

  32. L.B. Kong, M.L.S. Teo, Z.W. Li, G.Q. Lin, Y.B. Gan, J. Alloy Compd. 459, 576–582 (2008)

    Article  Google Scholar 

  33. A. Thakur, P. Thakur, J.-H. Hsu, IEEE Trans. Magn. 47, 4336–4339 (2011)

    Article  Google Scholar 

  34. A. Thakur, P. Thakur, J.-H. Hsu, J. Appl. Phys. 111, 078305 (2012)

    Google Scholar 

  35. P. Mathur, A. Thakur, J.H. Lee, M. Singh, Mater. Lett. 64, 2738–2741 (2010)

    Article  Google Scholar 

  36. C.C. Huang, Y.H. Hung, J.Y. Hsu, J. Mater. Sci. Mater. Electron. 24, 4411–4418 (2013)

    Article  Google Scholar 

  37. D.L. Sekulic, Z.A. Lazarewic, M.V. Sataric, C.D. Jovalekic, N.Z. Romcevic, J. Mater. Sci. Mater. Electron. 26, 1291–1303 (2015)

    Article  Google Scholar 

  38. S.R. Kulkarmi, P.U. Londhe, N.B. Chaure, J. Mater. Sci. Mater. Electron. 24, 4186–4191 (2013)

    Article  Google Scholar 

  39. A. Thakur, P. Mathur, M. Singh, Int. J. Mod. Phys. B 23, 365–374 (2009)

    Article  Google Scholar 

  40. A. Thakur, A. Chevalier, J.-L. Mattei, P. Queffélec, IEEE Trans. Magn. 47, 3720–3723 (2011)

    Article  Google Scholar 

  41. P. Mathur, A. Thakur, M. Singh, Z. Phys, Chem. 221, 887–895 (2007)

    Google Scholar 

  42. Ansoft. High frequency structures simulator (HFSS), Ver. 11.0, Ansoft Corporation, (2008)

  43. P. Mathur, A. Thakur, M. Singh, J. Magn. Magn. Mater. 320, 1364–1369 (2008)

    Article  Google Scholar 

  44. J. Smit, H.P.J Wijn, ferrites, Philips technical library, (1959)

  45. A. Thakur, P. Mathur, M. Singh, Ind. J Pure Appl. Phys. 46, 47–53 (2008)

    Google Scholar 

  46. P. Mathur, A. Thakur, M. Singh, Mod. Phys. Lett. B 21, 1425–1430 (2007)

    Article  Google Scholar 

  47. A. Hajalilou, M. Hasim, M. Abbasi, H.M. Kamari, H. Azimi, J. Mater. Sci. Mater. Electron. 26, 7468–7483 (2015)

    Article  Google Scholar 

  48. A. Beitollahi, M. Hoor, J. Mater. Sci. Mater. Electron. 14, 477–482 (2003)

    Article  Google Scholar 

  49. C.V. Reddy, C. Byon, B. Narendra, B. Dudem, J. Shim, S.J. Moon, S.V.P. Vattikutti, J. Mater. Sci. Mater. Electron. 26, 5078–5084 (2015)

    Article  Google Scholar 

  50. J.L. Snoek, Physica. 14, 207–217 (1948)

    Article  Google Scholar 

  51. L.B. Kong, Z.W. Li, G.Q. Lin, Y.B. Gan, IEEE Trans. Magn. 44, 559–565 (2008)

    Article  Google Scholar 

  52. C. Niamien, S. Collardey, A. Sharaiha, K. Mahdjoubi, IEEE Antennas Wirel. Propag. Lett. 10, 63–66 (2011)

    Article  Google Scholar 

  53. L.J. Martin, S. Ooi, D. Staiculescu, M.D. Hill, C.P. Wong, M.M. Tentzeris, IEEE Trans. Compon. Packag. Technol. 32, 849–858 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Department of Atomic Energy (DAE), Govt. of India, for financial support vide Sanction No. 2012/34/30/BRNS-1029.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ashish Saini or Atul Thakur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, A., Thakur, A. & Thakur, P. Matching permeability and permittivity of Ni0.5Zn0.3Co0.2In0.1Fe1.9O4 ferrite for substrate of large bandwidth miniaturized antenna. J Mater Sci: Mater Electron 27, 2816–2823 (2016). https://doi.org/10.1007/s10854-015-4095-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4095-8

Keywords

Navigation