Skip to main content
Log in

Thermal and light-induced electrical properties in nanocomposites of reduced graphene oxide and silver nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We present synthesis of nanocomposites of silver nanoparticles with reduced graphene oxide (Ag–rGO) using one-step, one-pot method where polyvinylpyrrolidone and ethylene glycol are, respectively, utilized as capping and reducing agents. The average particle size of Ag NP reduces by 16-folds when the composite is formed with rGO. We have examined the anharmonicity, thermal expansion, and thermal conductivities in rGO and Ag–rGO, while evaluating their crystallite sizes and defect densities using temperature-dependent Raman spectroscopy. The thermal conductivity of rGO and Ag–rGO at \(\sim\) 300 K have been found to be 2.86 ± 0.09 Wm\(^{-1}\) K\(^{-1}\) and 1.69 ± 0.06 Wm\(^{-1}\) K\(^{-1}\) , respectively. Owing to increase in defects in Ag–rGO, their thermal conductivity has been found to be smaller than that of rGO. In addition, I–V hysteresis loops are obtained for rGO and Ag–rGO and are used to explain variation in space charges and electrical resistances in the presence and absence of plasmonic excitation. In rGO, the electrical resistance remains nearly constant irrespective of the illumination, whereas in Ag–rGO a significant drop in the resistance upon illumination at 532 nm is observed. The increase in current is ascribed to plasmon-mediated charge transfer from nanoparticles to rGO surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Wang, X. Mu, M. Sun, T. Mu, Optoelectronic properties and applications of graphene-based hybrid nanomaterials and van der Waals heterostructures. Appl. Mater. Today 16, 1–20 (2019). https://doi.org/10.1016/j.apmt.2019.03.006

    Article  Google Scholar 

  2. B. Qiu, M. Xing, J. Zhang, Recent advances in three-dimensional graphene based materials for catalysis applications. Chem. Soc. Rev. 47(6), 2165–2216 (2018). https://doi.org/10.1039/C7CS00904F

    Article  CAS  Google Scholar 

  3. A. Nag, A. Mitra, S.C. Mukhopadhyay, Graphene and its sensor-based applications: a review. Sens. Actuat.: Phys. 270, 177–194 (2018). https://doi.org/10.1016/j.sna.2017.12.028

    Article  CAS  Google Scholar 

  4. Y.-F. Li, Y.-Z. Liu, Y. Liang, X.-H. Guo, C.-M. Chen, Preparation of nitrogen-doped graphene/activated carbon composite papers to enhance energy storage in supercapacitors. Appl. Phys. 123(9), 1–6 (2017). https://doi.org/10.1007/s00339-017-1178-9

    Article  CAS  Google Scholar 

  5. M. Zeyrek Ongun, S. Oguzlar, E.C. Doluel, U. Kartal, M. Yurddaskal, Enhancement of piezoelectric energy-harvesting capacity of electrospun \(\beta\)-PVDF nanogenerators by adding GO and rGO. J. Mater. Sci.: Mater. Electron. 31(3), 1960–1968 (2020). https://doi.org/10.1007/s10854-019-02715-w

    Article  CAS  Google Scholar 

  6. S. Pei, H.-M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012). https://doi.org/10.1016/j.carbon.2011.11.010

    Article  CAS  Google Scholar 

  7. M. Fathy, A. Gomaa, F.A. Taher, M.M. El-Fass, A.E.-H.B. Kashyout, Optimizing the preparation parameters of GO and rGO for large-scale production. J. Mater. Sci. 51(12), 5664–5675 (2016). https://doi.org/10.1007/s10853-016-9869-8

    Article  CAS  Google Scholar 

  8. Y. Wang, L. Sun, B. Fugetsu, Thiourea dioxide as a green reductant for the mass production of solution-based graphene. Bull. Chem. Soc. Jpn. 85(12), 1339–1344 (2012). https://doi.org/10.1246/bcsj.20120174

    Article  CAS  Google Scholar 

  9. P. Kumar, F. Shahzad, S. Yu, S.M. Hong, Y.-H. Kim, C.M. Koo, Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon 94, 494–500 (2015). https://doi.org/10.1016/j.carbon.2015.07.032

    Article  CAS  Google Scholar 

  10. J. Choi, N.D. Tu, S.-S. Lee, H. Lee, J.S. Kim, H. Kim, Controlled oxidation level of reduced graphene oxides and its effect on thermoelectric properties. Macromol. Res. 22(10), 1104–1108 (2014). https://doi.org/10.1007/s13233-014-2160-4

    Article  CAS  Google Scholar 

  11. M. Cheng, R. Yang, L. Zhang, Z. Shi, W. Yang, D. Wang, G. Xie, D. Shi, G. Zhang, Restoration of graphene from graphene oxide by defect repair. Carbon 50(7), 2581–2587 (2012). https://doi.org/10.1016/j.carbon.2012.02.016

    Article  CAS  Google Scholar 

  12. T. Mehmood, J.H. Kim, D.-J. Lee, S. Dizhur, R. Odessey, E.S. Hirst, R.M. Osgood III., M.H. Sayyad, M.A. Munawar, J. Xu, A microstructuring route to enhanced thermoelectric efficiency of reduced graphene oxide films. Mater. Res. Exp. 6(7), 075614 (2019). https://doi.org/10.1088/2053-1591/ab18d7

    Article  CAS  Google Scholar 

  13. N.D.K. Tu, J. Choi, C.R. Park, H. Kim, Remarkable conversion between n-and p-type reduced graphene oxide on varying the thermal annealing temperature. Chem. Mater. 27(21), 7362–7369 (2015). https://doi.org/10.1021/acs.chemmater.5b02999

    Article  CAS  Google Scholar 

  14. T.A. Amollo, G.T. Mola, M. Kirui, V.O. Nyamori, Graphene for thermoelectric applications: prospects and challenges. Crit. Rev. Solid State Mater. Sci. 43(2), 133–157 (2018). https://doi.org/10.1080/10408436.2017.1300871

    Article  CAS  Google Scholar 

  15. A.I. Cocemasov, D.L. Nika, A.A. Balandin, Phonons in twisted bilayer graphene. Phys. Rev. B 88(3), 035428 (2013). https://doi.org/10.1103/PhysRevB.88.035428

    Article  CAS  Google Scholar 

  16. A. Mohapatra, M.R. Rao, M. Jaiswal, Thermal transport in turbostratic multilayer graphene. Carbon 201, 120–128 (2023). https://doi.org/10.1016/j.carbon.2022.08.089

    Article  CAS  Google Scholar 

  17. T. Li, A.D. Pickel, Y. Yao, Y. Chen, Y. Zeng, S.D. Lacey, Y. Li, J. Dai, Y. Wang, Y. Wang et al., Thermoelectric properties and performance of flexible reduced graphene oxide films up to 3,000 K. Nat. Energy 3(2), 148–156 (2018). https://doi.org/10.1038/s41560-018-0086-3

    Article  CAS  Google Scholar 

  18. M. Ranjuna, J. Balakrishnan, Investigating the thermal transport in gold decorated graphene by opto-thermal Raman technique. Nanotechnology 33(13), 135706 (2022). https://doi.org/10.1088/1361-6528/ac45c2

    Article  Google Scholar 

  19. B. Meschi Amoli, J. Trinidad, A. Hu, Y.N. Zhou, B. Zhao, Highly electrically conductive adhesives using silver nanoparticle (Ag NP)-decorated graphene: the effect of NPs sintering on the electrical conductivity improvement. J. Mater. Sci.: Mater. Electron. 26(1), 590–600 (2015). https://doi.org/10.1007/s10854-014-2440-y

    Article  CAS  Google Scholar 

  20. L. Qiu, P. Guo, H. Zou, Y. Feng, X. Zhang, S. Pervaiz, D. Wen, Extremely low thermal conductivity of graphene nanoplatelets using nanoparticle decoration. ES Energy Environ. 2(9), 66–72 (2018). https://doi.org/10.30919/esee8c139

    Article  Google Scholar 

  21. K. Zhang, Y. Zhang, S. Wang, Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Sci. Rep. 3(1), 1–7 (2013). https://doi.org/10.1038/srep03448

    Article  Google Scholar 

  22. F.-C. Chen, J.-L. Wu, C.-L. Lee, Y. Hong, C.-H. Kuo, M.H. Huang, Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles. Appl. Phys. Lett. 95(1), 182 (2009). https://doi.org/10.1063/1.3174914

    Article  CAS  Google Scholar 

  23. L. Qiao, D. Wang, L. Zuo, Y. Ye, J. Qian, H. Chen, S. He, Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres. Appl. Energy 88(3), 848–852 (2011). https://doi.org/10.1016/j.apenergy.2010.09.021

    Article  CAS  Google Scholar 

  24. N.S. Rohizat, A.H.A. Ripain, C.S. Lim, C.L. Tan, R. Zakaria, Plasmon-enhanced reduced graphene oxide photodetector with monometallic of Au and Ag nanoparticles at VIS-NIR region. Sci. Rep. 11(1), 1–10 (2021). https://doi.org/10.1038/s41598-021-99189-w

    Article  CAS  Google Scholar 

  25. M. Poostforush, H. Azizi, I. Ghasemi, Enhanced through-plane thermal conductive properties of Ag/rGO nanocomposite. Polym.-Plast. Technol. Mater. 58(13), 1437–1444 (2019). https://doi.org/10.1080/25740881.2018.1563122

    Article  CAS  Google Scholar 

  26. S. Yang, B. Xue, Y. Li, X. Li, L. Xie, S. Qin, K. Xu, Q. Zheng, Controllable Ag–rGO heterostructure for highly thermal conductivity in layer-by-layer nanocellulose hybrid films. Chem. Eng. J. 383, 123072 (2020). https://doi.org/10.1016/j.cej.2019.123072

    Article  CAS  Google Scholar 

  27. P. Chettri, V. Vendamani, A. Tripathi, A.P. Pathak, A. Tiwari, Self assembly of functionalised graphene nanostructures by one step reduction of graphene oxide using aqueous extract of Artemisia vulgaris. Appl. Surface Sci. 362, 221–229 (2016). https://doi.org/10.1016/j.apsusc.2015.11.231

    Article  CAS  Google Scholar 

  28. J.-J. Zhu, C.-X. Kan, J.-G. Wan, M. Han, G.-H. Wang, High-yield synthesis of uniform Ag nanowires with high aspect ratios by introducing the long-chain PVP in an improved polyol process. J. Nanomater. (2011). https://doi.org/10.1155/2011/982547

    Article  Google Scholar 

  29. J. Helmlinger, C. Sengstock, C. Groß-Heitfeld, C. Mayer, T. Schildhauer, M. Köller, M. Epple, Silver nanoparticles with different size and shape: equal cytotoxicity, but different antibacterial effects. RSC Adv. 6(22), 18490–18501 (2016). https://doi.org/10.1039/C5RA27836H

    Article  CAS  Google Scholar 

  30. S. Link, M.A. El-Sayed, Optical properties and ultrafast dynamics of metallic nanocrystals. Ann. Rev. Phys. Chem. 54(1), 331–366 (2003). https://doi.org/10.1146/annurev.physchem.54.011002.103759

    Article  CAS  Google Scholar 

  31. P. Chettri, M.K. Singh, A. Tripathi, A.P. Pathak, R. Mandal, A. Tiwari, Eriochrome black t sensing using silver nanoparticle-reduced graphene oxide composite via luminescent turn-off mechanism and its biosorption on guava (psidium guajava) leaf powder. Graphene Technol. 4, 41–51 (2019). https://doi.org/10.1007/s41127-019-00026-9

    Article  Google Scholar 

  32. V. Dhand, L. Soumya, S. Bharadwaj, S. Chakra, D. Bhatt, B. Sreedhar, Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater. Sci. Eng.: C 58, 36–43 (2016). https://doi.org/10.1016/j.msec.2015.08.018

    Article  CAS  Google Scholar 

  33. D. Gu, X. Chang, X. Zhai, S. Sun, Z. Li, T. Liu, L. Dong, Y. Yin, Efficient synthesis of silver-reduced graphene oxide composites with prolonged antibacterial effects. Ceram. Int. 42(8), 9769–9778 (2016). https://doi.org/10.1016/j.ceramint.2016.03.069

    Article  CAS  Google Scholar 

  34. A.V.A. Mariadoss, K. Saravanakumar, A. Sathiyaseelan, M.-H. Wang, Preparation, characterization and anti-cancer activity of graphene oxide-silver nanocomposite. J. Photochem. Photobiol. B: Biol. 210, 111984 (2020). https://doi.org/10.1016/j.jphotobiol.2020.111984

    Article  CAS  Google Scholar 

  35. K. Niwase, M. Terasawa, S.-I. Honda, M. Niibe, T. Hisakuni, T. Iwata, Y. Higo, T. Hirai, T. Shinmei, H. Ohfuji et al., Quenchable compressed graphite synthesized from neutron-irradiated highly oriented pyrolytic graphite in high pressure treatment at 1500\(^{\circ }\)C. J. Appl. Phys. 123(16), 161577 (2018). https://doi.org/10.1063/1.5011209

    Article  CAS  Google Scholar 

  36. N. Gupta, S. Walia, U. Mogera, G.U. Kulkarni, Twist-dependent Raman and electron diffraction correlations in twisted multilayer graphene. J. Phys. Chem. Lett. 11(8), 2797–2803 (2020). https://doi.org/10.1021/acs.jpclett.0c00582

    Article  CAS  Google Scholar 

  37. M.A. Ahmad, S. Aslam, F. Mustafa, U. Arshad, Synergistic antibacterial activity of surfactant free Ag-GO nanocomposites. Sci. Rep. 11(1), 1–9 (2021). https://doi.org/10.1038/s41598-020-80013-w

    Article  CAS  Google Scholar 

  38. I. Roy, D. Rana, G. Sarkar, A. Bhattacharyya, N.R. Saha, S. Mondal, S. Pattanayak, S. Chattopadhyay, D. Chattopadhyay, Physical and electrochemical characterization of reduced graphene oxide/silver nanocomposites synthesized by adopting a green approach. RSC Adv. 5(32), 25357–25364 (2015). https://doi.org/10.1039/C4RA16197A

    Article  CAS  Google Scholar 

  39. N. Ahmad, A.S. Al-Fatesh, R. Wahab, M. Alam, A.H. Fakeeha, Synthesis of silver nanoparticles decorated on reduced graphene oxide nanosheets and their electrochemical sensing towards hazardous 4-nitrophenol. J. Mater. Sci.: Mater. Electron. 31(14), 11927–11937 (2020). https://doi.org/10.1007/s10854-020-03747-3

    Article  CAS  Google Scholar 

  40. M. Kumar, P. Devi, A. Kumar, Structural analysis of PVP capped silver nanoparticles synthesized at room temperature for optical, electrical and gas sensing properties. J. Mater. Sci.: Mater. Electron. 28(6), 5014–5020 (2017). https://doi.org/10.1007/s10854-016-6157-y

    Article  CAS  Google Scholar 

  41. P. Vasudevan, S. Thomas, P. Biju, C. Sudarsanakumar, N. Unnikrishnan, Synthesis and structural characterization of sol-gel derived titania/poly (vinyl pyrrolidone) nanocomposites. J. Sol-Gel Sci. Technol. 62(1), 41–46 (2012). https://doi.org/10.1007/s10971-012-2680-3

    Article  CAS  Google Scholar 

  42. P. Mukherjee, M. Roy, B. Mandal, G. Dey, P. Mukherjee, J. Ghatak, A. Tyagi, S. Kale, Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19(7), 075103 (2008). https://doi.org/10.1088/0957-4484/19/7/075103

    Article  CAS  Google Scholar 

  43. T.K. Naqvi, A.K. Srivastava, M.M. Kulkarni, A.M. Siddiqui, P.K. Dwivedi, Silver nanoparticles decorated reduced graphene oxide (rGO) SERS sensor for multiple analytes. Appl. Surface Sci. 478, 887–895 (2019). https://doi.org/10.1016/j.apsusc.2019.02.026

    Article  CAS  Google Scholar 

  44. M. Sharma, S. Rani, D.K. Pathak, R. Bhatia, R. Kumar, I. Sameera, Temperature dependent Raman modes of reduced graphene oxide: Effect of anharmonicity, crystallite size and defects. Carbon 184, 437–444 (2021). https://doi.org/10.1016/j.carbon.2021.08.014

    Article  CAS  Google Scholar 

  45. I. Calizo, A. Balandin, W. Bao, F. Miao, C. Lau, Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 7(9), 2645–2649 (2007). https://doi.org/10.1021/nl071033g

    Article  CAS  Google Scholar 

  46. S. Parmar, A. Biswas, S.K. Singh, B. Ray, S. Parmar, S. Gosavi, V. Sathe, R.J. Choudhary, S. Datar, S. Ogale, Coexisting 1T/2H polymorphs, reentrant resistivity behavior, and charge distribution in Mo S 2- hBN 2D/2D composite thin films. Phys. Rev. Mater. 3(7), 074007 (2019). https://doi.org/10.1103/PhysRevMaterials.3.074007

    Article  CAS  Google Scholar 

  47. L. Cançado, K. Takai, T. Enoki, M. Endo, Y. Kim, H. Mizusaki, A. Jorio, L. Coelho, R. Magalhães-Paniago, M. Pimenta, General equation for the determination of the crystallite size L a of nanographite by Raman spectroscopy. Appl. Phys. Lett. 88(16), 163106 (2006). https://doi.org/10.1063/1.2196057

    Article  CAS  Google Scholar 

  48. H. Malekpour, P. Ramnani, S. Srinivasan, G. Balasubramanian, D.L. Nika, A. Mulchandani, R.K. Lake, A.A. Balandin, Thermal conductivity of graphene with defects induced by electron beam irradiation. Nanoscale 8(30), 14608–14616 (2016). https://doi.org/10.1039/C6NR03470E

    Article  CAS  Google Scholar 

  49. W. Wang, Q. Peng, Y. Dai, Z. Qian, S. Liu, Temperature dependence of Raman spectra of graphene on copper foil substrate. J. Mater. Sci.: Mater. Electron. 27(4), 3888–3893 (2016). https://doi.org/10.1007/s10854-015-4238-y

    Article  CAS  Google Scholar 

  50. D.J. Late, U. Maitra, L. Panchakarla, U.V. Waghmare, C. Rao, Temperature effects on the Raman spectra of graphenes: dependence on the number of layers and doping. J. Phys.: Condens. Matter 23(5), 055303 (2011). https://doi.org/10.1088/0953-8984/23/5/055303

    Article  CAS  Google Scholar 

  51. A. Apostolov, I. Apostolova, J. Wesselinowa, Temperature and layer number dependence of the G and 2D phonon energy and damping in graphene. J. Phys.: Condens. Matter 24(23), 235401 (2012). https://doi.org/10.1088/0953-8984/24/23/235401

    Article  CAS  Google Scholar 

  52. R. Cuscó, B. Gil, G. Cassabois, L. Artús, Temperature dependence of Raman-active phonons and anharmonic interactions in layered hexagonal BN. Phys. Rev. B 94(15), 155435 (2016). https://doi.org/10.1103/PhysRevB.94.155435

    Article  CAS  Google Scholar 

  53. S. Osswald, V. Mochalin, M. Havel, G. Yushin, Y. Gogotsi, Phonon confinement effects in the Raman spectrum of nanodiamond. Phys. Rev. B 80(7), 075419 (2009). https://doi.org/10.1103/PhysRevB.80.075419

    Article  CAS  Google Scholar 

  54. T. Mondal, A. Tripathi, A. Tiwari, J. Zhang, T. Shripathi, H. Shinohara, Temperature and pressure induced Raman studies of C 60 oxide. J. Appl. Phys. 124(19), 195105 (2018). https://doi.org/10.1063/1.5051396

    Article  CAS  Google Scholar 

  55. C.-L. Huang, X. Qian, R.-G. Yang, Influence of nanoparticle size distribution on the thermal conductivity of particulate nanocomposites. EPL (Europhysics Letters) 117(2), 24001 (2017). https://doi.org/10.1209/0295-5075/117/24001

    Article  CAS  Google Scholar 

  56. A. Minnich, G. Chen, Modified effective medium formulation for the thermal conductivity of nanocomposites. Appl. Phys. Lett. 91(7), 073105 (2007). https://doi.org/10.1063/1.2771040

    Article  CAS  Google Scholar 

  57. C.B. Kim, J. Lee, J. Cho, M. Goh, Thermal conductivity enhancement of reduced graphene oxide via chemical defect healing for efficient heat dissipation. Carbon 139, 386–392 (2018). https://doi.org/10.1016/j.carbon.2018.07.008

    Article  CAS  Google Scholar 

  58. P. Chettri, A. Tripathi, A. Tiwari, Effect of silver nanoparticles on electrical and magnetic properties of reduced graphene oxide. Mater. Res. Bull. 150, 111752 (2022). https://doi.org/10.1016/j.materresbull.2022.111752

    Article  CAS  Google Scholar 

  59. Y. He, Y. Zhang, X. Li, Z. Lv, X. Wang, Z. Liu, X. Huang, Capacitive mechanism of oxygen functional groups on carbon surface in supercapacitors. Electrochim. Acta 282, 618–625 (2018). https://doi.org/10.1016/j.electacta.2018.06.103

    Article  CAS  Google Scholar 

  60. P. Pandey, A. Sengupta, S. Parmar, U. Bansode, S. Gosavi, A. Swarnkar, S. Muduli, A.D. Mohite, S. Ogale, CsPbBr 3-Ti3C2T x MXene QD/QD heterojunction: photoluminescence quenching, charge transfer, and Cd ion sensing application. ACS Appl. Nano Mater. 3(4), 3305–3314 (2020). https://doi.org/10.1021/acsanm.0c00051

    Article  CAS  Google Scholar 

  61. D.P. Singh, A.K. Misra, K.K. Pandey, B. Pal, N. Kumar, D. Singh, K. Kondratenko, B. Duponchel, P. Genevray, R. Douali, Spectroscopic, dielectric and nonlinear current-voltage characterization of a hydrogen-bonded liquid crystalline compound influenced via graphitic nanoflakes: an equilibrium between the experimental and theoretical studies. J. Mol. Liq. 302, 112537 (2020). https://doi.org/10.1016/j.molliq.2020.112537

    Article  CAS  Google Scholar 

  62. W. Brütting, H. Riel, T. Beierlein, W. Riess, Influence of trapped and interfacial charges in organic multilayer light-emitting devices. J. Appl. Phys. 89(3), 1704–1712 (2001). https://doi.org/10.1063/1.1332088

    Article  CAS  Google Scholar 

  63. Y. Anno, Y. Imakita, K. Takei, S. Akita, T. Arie, Enhancement of graphene thermoelectric performance through defect engineering. 2D Mater. 4(2), 025019 (2017)

    Article  Google Scholar 

  64. M. Gupta, P. Singh, B. Bhattacharya, Y. Shulga, N. Shulga, Y. Kumar, Progress, status and prospects of non-porous, heteroatom-doped carbons for supercapacitors and other electrochemical applications. Appl. Phys. A 125(2), 1–15 (2019). https://doi.org/10.1007/s00339-019-2400-8

    Article  CAS  Google Scholar 

  65. D.O. Idisi, E.M. Benecha, S.J. Moloi, S.C. Ray, Effects of gold nanoparticles (Au-NPs) on the electrical properties of reduced graphene oxide: an experimental and DFT study. J. Mater. Res. 37(5), 1037–1046 (2022). https://doi.org/10.1557/s43578-022-00514-4

    Article  CAS  Google Scholar 

  66. A. Biswas, A. Swarnkar, P. Pandey, P. Kour, S. Parmar, S. Ogale, Dynamics of photo-generated carriers across the interface between CsPbBr 3 nanocrystals and Au-Ag nanostructured film, and its control via ultrathin MgO interface layer. ACS Omega 5(21), 11915–11922 (2020). https://doi.org/10.1021/acsomega.9b03817

    Article  CAS  Google Scholar 

  67. W. Kubo, M. Kondo, K. Miwa, Quantitative analysis of the plasmonic photo-thermoelectric phenomenon. J. Phys. Chem. C 123(35), 21670–21675 (2019). https://doi.org/10.1021/acs.jpcc.9b03332

    Article  CAS  Google Scholar 

  68. Y. Zhu, B. Wang, C. Deng, Y. Wang, X. Wang, Photothermal-pyroelectric-plasmonic coupling for high performance and tunable band-selective photodetector. Nano Energy 83, 105801 (2021). https://doi.org/10.1016/j.nanoen.2021.105801

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AT thankfully acknowledges DST-SERB, Government of India (File No. ECR/2018/000212) and Seed Grant under the IoE scheme, BHU, Varanasi for financial support. APP thanks National Academy of Sciences India (NASI) for award of NASI Sr Scientist Platinum Jubilee Fellowship and NA thanks NASI for RA in the same project. Department of Physics, Sikkim University thankfully acknowledge the financial support from DST-FIST.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Tiwari.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 2275 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurung, S., Arun, N., Pathak, A.P. et al. Thermal and light-induced electrical properties in nanocomposites of reduced graphene oxide and silver nanoparticles. J Mater Sci: Mater Electron 34, 1108 (2023). https://doi.org/10.1007/s10854-023-10481-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10481-z

Navigation