Skip to main content

Advertisement

Log in

One-step facile synthesis of Sr-doped ZnO as electrode material for supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

One of the most cutting-edge areas of study in alternative and renewable energy applications is the creation of extremely efficient electrode materials for high power devices. In-depth research is being carried out on energy-storage technology for the benefit of future civilisation in order to address problems including rising fuel cost, pollution, and global warming. Doped ZnO nanostructures received lot of attention in recent years due to their unique characteristics, which render them suitable for energy-storage devices. Herein, we report 3, 6, and 9 wt% Sr-doped ZnO synthesised by simple and cost-effective co-precipitation route. The as-prepared sample was displayed by different physico-chemical tools. The substantial specific capacitance (Csp) of 698 Fg−1 at 5 mVs−1 was displayed by 9 wt% Sr-doped ZnO electrode, and it also retained 95.4% of its initial capacitance even after 5000 GCD cycles at the current density of 1 Ag−1. The improved capacitance behaviour of 9 wt% Sr-doped ZnO electrode was accredited to its huge number of active redox sites favourable for quick electron/ion transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors do not have permission to share data.

References

  1. S. Rajkumar, E. Elanthamilan, J.P. Merlin, A. Sathiyan, Enhanced electrochemical behaviour of FeCo2O4/PANI electrode material for supercapacitors. J. Alloy Compd. 874, 159876 (2021)

    Article  CAS  Google Scholar 

  2. R. Srinivasan, E. Elaiyappillai, S. Gowri, A. Bella, A. Sathiyan, B. Meenatchi, J.P. Merlin, Electrochemical performance of l-tryptophanium picrate as an efficient electrode material for supercapacitor application. Phys. Chem. Chem. Phys. 21, 11829–11838 (2019)

    Article  CAS  Google Scholar 

  3. S.A.U. Portia, R. Srinivasan, E. Elaiyappillai, P.M. Johnson, K. Ramamoorthy, Facile synthesis of Eu-doped CaTiO3 and their enhanced supercapacitive performance. Ionics 26, 3543–3554 (2020)

    Article  CAS  Google Scholar 

  4. S. Rajkumar, E. Elanthamilan, J.P. Merlin, Facile synthesis of Zn3V2O8 nanostructured material and its enhanced supercapacitive performance. J. Alloy Compd. 861, 157939 (2021)

    Article  CAS  Google Scholar 

  5. S. Rajkumar, E. Elanthamilan, J.P. Merlin, I.J.D. Priscillal, I.S. Lydia, Fabrication of a CuCo2O4/PANI nanocomposite as an advanced electrode for high performance supercapacitors. Sustain. Energy Fuels 4, 5313–5326 (2020)

    Article  CAS  Google Scholar 

  6. S. Rajkumar, S. Gowri, S. Dhineshkumar, J.P. Merlin, A. Sathiyan, Investigation on NiWO4/PANI composite as an electrode material for energy storage devices. New J. Chem. 45(44), 20612–20623 (2021)

    Article  CAS  Google Scholar 

  7. S. Rajkumar, J.C. Ezhilarasi, P. Saranya, J.P. Merlin, Fabrication of CoWO4/PANI composite as electrode material for energy storage applications. J. Phys. Chem. Solids 162, 110500 (2022)

    Article  CAS  Google Scholar 

  8. M.D. Angelin, S. Rajkumar, A. Ravichandran, J.P. Merlin, Systematic investigation on the electrochemical performance of Cd-doped ZnO as electrode material for energy storage devices. J. Phys. Chem. Solids 161, 110486 (2021)

    Article  Google Scholar 

  9. S. Rajkumar, E. Elanthamilan, S.-F. Wang, H. Chryso, P.V.D. Balan, J.P. Merlin, One-pot green recovery of copper oxide nanoparticles from discarded printed circuit boards for electrode material in supercapacitor application. Resour. Conserv. Recycl. 180, 106180 (2022)

    Article  CAS  Google Scholar 

  10. N. Sudhan, K. Subramani, M. Karnan, N. Ilayaraja, M. Sathish, Biomass-derived activated porous carbon from rice straw for a high-energy symmetric supercapacitor in aqueous and non-aqueous electrolytes. Energy Fuels 31, 977–985 (2017)

    Article  CAS  Google Scholar 

  11. S. Rajkumar, E. Elanthamilan, T.E. Balaji, A. Sathiyan, N.E. Jafneel, J.P. Merlin, Recovery of copper oxide nanoparticles from waste SIM cards for supercapacitor electrode material. J. Alloy Compd. 849, 156582 (2020)

    Article  CAS  Google Scholar 

  12. A.R. Xavier, A. Ravichandran, S. Vijayakumar, M.D. Angelin, S. Rajkumar, J.P. Merlin, Synthesis and characterization of Sr-doped CdO nanoplatelets for supercapacitor applications. J. Mater. Sci. 1–9 (2021)

  13. M. Selvakumar, D.K. Bhat, A.M. Aggarwal, S.P. Iyer, G. Sravani, Nano ZnO-activated carbon composite electrodes for supercapacitors. Physica B 405, 2286–2289 (2010)

    Article  CAS  Google Scholar 

  14. D. Kalpana, K. Omkumar, S.S. Kumar, N. Renganathan, A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor. Electrochim. Acta 52, 1309–1315 (2006)

    Article  CAS  Google Scholar 

  15. I.N. Reddy, C.V. Reddy, A. Sreedhar, J. Shim, M. Cho, K. Yoo, D. Kim, Structural, optical, and bifunctional applications: supercapacitor and photoelectrochemical water splitting of Ni-doped ZnO nanostructures. J. Electroanal. Chem. 828, 124–136 (2018)

    Article  Google Scholar 

  16. Ü. Alver, A. Tanrıverdi, Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors. Appl. Surf. Sci. 378, 368–374 (2016)

    Article  CAS  Google Scholar 

  17. M. Huang, F. Li, X.L. Zhao, D. Luo, X.Q. You, Y.X. Zhang, G. Li, Hierarchical ZnO@ MnO2 core-shell pillar arrays on Ni foam for binder-free supercapacitor electrodes. Electrochim. Acta 152, 172–177 (2015)

    Article  CAS  Google Scholar 

  18. M. Jayalakshmi, M. Palaniappa, K. Balasubramanian, Single step solution combustion synthesis of ZnO/carbon composite and its electrochemical characterization for supercapacitor application. Int. J. Electrochem. Sci 3, 96–103 (2008)

    CAS  Google Scholar 

  19. A. Ali, M. Ammar, M. Ali, Z. Yahya, M.Y. Javaid, S. ul Hassan, T. Ahmed, Mo-doped ZnO nanoflakes on Ni-foam for asymmetric supercapacitor applications. RSC Adv. 9, 27432–27438 (2019)

    Article  CAS  Google Scholar 

  20. W. Wang, T. Ai, W. Li, R. Jing, Y. Fei, X. Feng, Photoelectric and electrochemical performance of Al-doped ZnO thin films hydrothermally grown on graphene-coated polyethylene terephthalate bilayer flexible substrates. J. Phys. Chem. C 121, 28148–28157 (2017)

    Article  CAS  Google Scholar 

  21. S. Kang, Y. Im, K.S. Park, T.W. Cho, J. Jeon, K.-I. Chung, M. Kang, The incorporation of Cr ions into the framework of ZnO for stable electrochemical performance in a membrane free alkaline Ni/Zn redox. Electrochim. Acta 209, 623–631 (2016)

    Article  CAS  Google Scholar 

  22. R. Srinivasan, E. Elaiyappillai, S. Anandaraj, B. kumar Duvaragan, P.M. Johnson, Study on the electrochemical behavior of BiVO4/PANI composite as a high performance supercapacitor material with excellent cyclic stability. J. Electroanal. Chem. 861, 113972 (2020)

    Article  CAS  Google Scholar 

  23. R. Srinivasan, E. Elaiyappillai, E.J. Nixon, I.S. Lydia, P.M. Johnson, Enhanced electrochemical behaviour of Co-MOF/PANI composite electrode for supercapacitors. Inorg. Chim. Acta 502, 119393 (2020)

    Article  CAS  Google Scholar 

  24. S. Rajaboopathi, S. Thambidurai, Heterostructure of CdO-ZnO nanoparticles intercalated on PANI matrix for better thermal and electrochemical performance. Mater. Sci. Semicond. Process. 59, 56–67 (2017)

    Article  CAS  Google Scholar 

  25. S.H. Khan, R. Suriyaprabha, B. Pathak, M. Fulekar, Photocatalytic degradation of organophosphate pesticides (Chlorpyrifos) using synthesized zinc oxide nanoparticle by membrane filtration reactor under UV irradiation. Front. Nanosci. Nanotechnol 1, 23–27 (2015)

    Article  Google Scholar 

  26. A. Anžlovar, Z. Crnjak Orel, K. Kogej, Polyol-mediated synthesis of zinc oxide nanorods and nanocomposites with poly (methyl methacrylate). J. Nanomater. (2012)

  27. S.A. Hosseini, S. Babaei, Graphene oxide/zinc oxide (GO/ZnO) nanocomposite as a superior photocatalyst for degradation of methylene blue (MB)-process modeling by response surface methodology (RSM). J. Braz. Chem. Soc. 28, 299–307 (2017)

    CAS  Google Scholar 

  28. S.B. Khan, M.M. Rahman, H.M. Marwani, A.M. Asiri, K.A. Alamry, An assessment of zinc oxide nanosheets as a selective adsorbent for cadmium. Nanoscale Res. Lett. 8, 1–8 (2013)

    Article  CAS  Google Scholar 

  29. H. Li, F. Liu, X. Ma, Z. Wu, Y. Li, L. Zhang, S. Zhou, Y. Helian, Catalytic performance of strontium oxide supported by MIL–100 (Fe) derivate as transesterification catalyst for biodiesel production. Energy Convers. Manag. 180, 401–410 (2019)

    Article  CAS  Google Scholar 

  30. M. Yarahmadi, H. Maleki-Ghaleh, M.E. Mehr, Z. Dargahi, F. Rasouli, M.H. Siadati, Synthesis and characterization of Sr-doped ZnO nanoparticles for photocatalytic applications. J. Alloy Compd. 853, 157000 (2021)

    Article  CAS  Google Scholar 

  31. A.A. Reddy, D.U. Tulyaganov, G.C. Mather, S. Rodriguez-Lopez, S. Das, M.J. Pascual, F. Munoz, R. Siegel, J.R. Senker, J.M. Ferreira, Influence of strontium oxide on structural transformations in diopside-based glass-ceramics assessed by diverse structural tools. J. Phys. Chem. C 119, 11482–11492 (2015)

    Article  CAS  Google Scholar 

  32. Y.-L. Chen, Z.-A. Hu, Y.-Q. Chang, H.-W. Wang, Z.-Y. Zhang, Y.-Y. Yang, H.-Y. Wu, Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix. J. Phys. Chem. C 115, 2563–2571 (2011)

    Article  CAS  Google Scholar 

  33. R. Madhu, V. Veeramani, S.-M. Chen, P. Veerakumar, S.-B. Liu, N. Miyamoto, Functional porous carbon–ZnO nanocomposites for high-performance biosensors and energy storage applications. Phys. Chem. Chem. Phys. 18, 16466–16475 (2016)

    Article  CAS  Google Scholar 

  34. M.D. Angelin, S. Rajkumar, J.P. Merlin, A.R. Xavier, M. Franklin, A. Ravichandran, Electrochemical investigation of Zr-doped ZnO nanostructured electrode material for high-performance supercapacitor. Ionics 26, 5757–5772 (2020)

    Article  CAS  Google Scholar 

  35. N.N. Kumaran, K. Muraleedharan, Photocatalytic activity of ZnO and Sr2+ doped ZnO nanoparticles. J. Water Process Eng. 17, 264–270 (2017)

    Article  Google Scholar 

  36. S. Suwanboon, W. Somraksa, P. Amornpitoksuk, C. Randorn, Effect of trisodium citrate on the formation and structural, optical and photocatalytic properties of Sr-doped ZnO. J. Alloy Compd. 832, 154963 (2020)

    Article  CAS  Google Scholar 

  37. K.P. Raj, K. Sadaiyandi, A. Kennedy, R. Thamizselvi, Structural, optical, photoluminescence and photocatalytic assessment of Sr-doped ZnO nanoparticles. Mater. Chem. Phys. 183, 24–36 (2016)

    Article  Google Scholar 

  38. I. Ahmad, S. Shukrullah, M.Y. Naz, M.A. Rasheed, M. Ahmad, E. Ahmed, M.S. Akhtar, N. Khalid, A. Hussain, S. Khalid, Boosted hydrogen evolution activity from Sr doped ZnO/CNTs nanocomposite as visible light driven photocatalyst. Int. J. Hydrog. Energy 46, 26711–26724 (2021)

    Article  CAS  Google Scholar 

  39. M. Thirumoorthi, J.T.J. Prakash, A study of Tin doping effects on physical properties of CdO thin films prepared by sol–gel spin coating method. J. Asian Ceram. Soc. 4, 39–45 (2016)

    Article  Google Scholar 

  40. R. Ahmed, G. Nabi, Morphology tailoring and enhanced electrochemical properties of Cd–Zn co-doped NiO nanorods for high performance supercapacitor. Ceram. Int. 46, 22330–22337 (2020)

    Article  CAS  Google Scholar 

  41. R. Yousefi, F. Jamali-Sheini, M. Cheraghizade, S. Khosravi-Gandomani, A. Sáaedi, N.M. Huang, W.J. Basirun, M. Azarang, Enhanced visible-light photocatalytic activity of strontium-doped zinc oxide nanoparticles. Mater. Sci. Semicond. Process. 32, 152–159 (2015)

    Article  CAS  Google Scholar 

  42. Y. Chen, Y. Liu, S. Lu, C. Xu, C. Shao, C. Wang, J. Zhang, Y. Lu, D. Shen, X. Fan, Optical properties of ZnO and ZnO: in nanorods assembled by sol-gel method. J. Chem. Phys. 123, 134701 (2005)

    Article  CAS  Google Scholar 

  43. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751–767 (1976)

    Article  Google Scholar 

  44. R. Udayabhaskar, B. Karthikeyan, Role of micro-strain and defects on band-gap, fluorescence in near white light emitting Sr doped ZnO nanorods. J. Appl. Phys. 116, 094310 (2014)

    Article  Google Scholar 

  45. K.R. Devi, G. Selvan, M. Karunakaran, I.L.P. Raj, V. Ganesh, S. AlFaify, Enhanced room temperature ammonia gas sensing properties of strontium doped ZnO thin films by cost-effective SILAR method. Mater. Sci. Semicond. Process. 119, 105117 (2020)

    Article  Google Scholar 

  46. P.G. Devi, A.S. Velu, Synthesis, structural and optical properties of pure ZnO and Co doped ZnO nanoparticles prepared by the co-precipitation method. J. Theoret. Appl. Phys. 10, 233–240 (2016)

    Article  Google Scholar 

  47. X. Zheng, Y. Sun, X. Yan, X. Sun, G. Zhang, Q. Zhang, Y. Jiang, W. Gao, Y. Zhang, High carrier concentration ZnO nanowire arrays for binder-free conductive support of supercapacitors electrodes by Al doping. J. Colloid Interface Sci. 484, 155–161 (2016)

    Article  CAS  Google Scholar 

  48. L. Xu, S. Xiao, C. Zhang, G. Zheng, J. Su, L. Zhao, J. Wang, Optical and structural properties of Sr-doped ZnO thin films. Mater. Chem. Phys. 148, 720–726 (2014)

    Article  CAS  Google Scholar 

  49. C.H. Kim, B.-H. Kim, Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes. J. Power Sources 274, 512–520 (2015)

    Article  CAS  Google Scholar 

  50. E. Samuel, B. Joshi, M.-W. Kim, Y.-I. Kim, M.T. Swihart, S.S. Yoon, Hierarchical zeolitic imidazolate framework-derived manganese-doped zinc oxide decorated carbon nanofiber electrodes for high performance flexible supercapacitors. Chem. Eng. J. 371, 657–665 (2019)

    Article  CAS  Google Scholar 

  51. D. Kim, J.-Y. Leem, Crystallization of ZnO thin films via thermal dissipation annealing method for high-performance UV photodetector with ultrahigh response speed. Sci. Rep. 11, 1–10 (2021)

    Google Scholar 

  52. N.V. Tuyen, N.N. Long, T.T.Q. Hoa, N.X. Nghia, D.H. Chi, K. Higashimine, T. Mitani, T.D. Canh, Indium-doped zinc oxide nanometre thick disks synthesised by a vapour-phase transport process. J. Exp. Nanosci. 4, 243–252 (2009)

    Article  CAS  Google Scholar 

  53. X. He, J.E. Yoo, M.H. Lee, J. Bae, Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires. Nanotechnology 28, 245402 (2017)

    Article  Google Scholar 

  54. H. Asgar, K.M. Deen, W. Haider, Estimation of electrochemical charge storage capability of ZnO/CuO/reduced graphene oxide nanocomposites. Int. J. Energy Res. 44, 1580–1593 (2020)

    Article  CAS  Google Scholar 

  55. F. Ahmed, G. Almutairi, B. AlOtaibi, S. Kumar, N. Arshi, S.G. Hussain, A. Umar, N. Ahmad, A. Aljaafari, Binder-free electrode based on ZnO nanorods directly grown on aluminum substrate for high performance supercapacitors. Nanomaterials 10, 1979 (2020)

    Article  CAS  Google Scholar 

  56. L. Xu, Y. Zhao, J. Lian, Y. Xu, J. Bao, J. Qiu, L. Xu, H. Xu, M. Hua, H. Li, Morphology controlled preparation of ZnCo2O4 nanostructures for asymmetric supercapacitor with ultrahigh energy density. Energy 123, 296–304 (2017)

    Article  CAS  Google Scholar 

  57. N. Padmanathan, S. Selladurai, Shape controlled synthesis of CeO2 nanostructures for high performance supercapacitor electrodes. RSC Adv. 4, 6527–6534 (2014)

    Article  CAS  Google Scholar 

  58. H. Zhang, J. Gu, J. Tong, Y. Hu, B. Guan, B. Hu, J. Zhao, C. Wang, Hierarchical porous MnO2/CeO2 with high performance for supercapacitor electrodes. Chem. Eng. J. 286, 139–149 (2016)

    Article  CAS  Google Scholar 

  59. K. Prasanna, P. Santhoshkumar, Y.N. Jo, I.N. Sivagami, S.H. Kang, Y.C. Joe, C.W. Lee, Highly porous CeO2 nanostructures prepared via combustion synthesis for supercapacitor applications. Appl. Surf. Sci. 449, 454–460 (2018)

    Article  CAS  Google Scholar 

  60. H. Zhu, J. Liu, Q. Zhang, J. Wei, High electrochemical performance of metal azolate framework-derived ZnO/Co3O4 for supercapacitors. Int. J. Energy Res. 44, 8654–8665 (2020)

    Article  CAS  Google Scholar 

  61. S. Shi, X. Zhuang, B. Cheng, X. Wang, Solution blowing of ZnO nanoflake-encapsulated carbon nanofibers as electrodes for supercapacitors. J. Mater. Chem. A 1, 13779–13788 (2013)

    Article  CAS  Google Scholar 

  62. X. He, R. Li, J. Liu, Q. Liu, D. Song, J. Wang, Hierarchical FeCo2O4@ NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors. Chem. Eng. J. 334, 1573–1583 (2018)

    Article  CAS  Google Scholar 

  63. A. Shanmugavani, R.K. Selvan, Improved electrochemical performances of CuCo2O4/CuO nanocomposites for asymmetric supercapacitors. Electrochim. Acta 188, 852–862 (2016)

    Article  CAS  Google Scholar 

  64. W.K. Chee, H.N. Lim, N.M. Huang, Electrochemical properties of free-standing polypyrrole/graphene oxide/zinc oxide flexible supercapacitor. Int. J. Energy Res. 39, 111–119 (2015)

    Article  CAS  Google Scholar 

  65. S. Li, J. Wen, X. Mo, H. Long, H. Wang, J. Wang, G. Fang, Three-dimensional MnO2 nanowire/ZnO nanorod arrays hybrid nanostructure for high-performance and flexible supercapacitor electrode. J. Power Sources 256, 206–211 (2014)

    Article  CAS  Google Scholar 

  66. M.S. Yadav, N. Singh, A. Kumar, Synthesis and characterization of zinc oxide nanoparticles and activated charcoal based nanocomposite for supercapacitor electrode application. J. Mater. Sci. 29, 6853–6869 (2018)

    CAS  Google Scholar 

  67. T.-F. Yi, Y.-M. Li, J.-Z. Wu, Y. Xie, S. Luo, Hierarchical mesoporous flower-like ZnCo2O4@ NiO nanoflakes grown on nickel foam as high-performance electrodes for supercapacitors. Electrochim. Acta 284, 128–141 (2018)

    Article  CAS  Google Scholar 

  68. X. Dong, Y. Cao, J. Wang, M.B. Chan-Park, L. Wang, W. Huang, P. Chen, Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Adv. 2, 4364–4369 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Management of Bishop Heber College (Autonomous), Tiruchirappalli-620 017, Tamil Nadu, India for the support and facilities provided through Material Chemistry Lab, PG and Research Department of Chemistry and DST-FIST Instrumentation Centre (HAIF) at Bishop Heber College, Tiruchirappalli-620 017.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Mrs. M. Dhivya Angelin: Conceptualisation, Methodology, Funding acquisition & Writing—Original Draft. Dr. S. Rajkumar: Writing—Review & Editing, Software, Investigation, and Validation. Mr. S. Dhineshkumar: Formal analysis and Data curation. Dr. A.T. Ravichandran: Supervision, Visualisation & Writing—Review & Editing. Dr. A. Ravi kumar: Formal analysis and Data curation. Dr. J. Princy Merlin: Supervision, Validation and Writing—Review & Editing.

Corresponding authors

Correspondence to A. T. Ravichandran or J. Princy Merlin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelin, M.D., Rajkumar, S., Dhineshkumar, S. et al. One-step facile synthesis of Sr-doped ZnO as electrode material for supercapacitors. J Mater Sci: Mater Electron 34, 1107 (2023). https://doi.org/10.1007/s10854-023-10465-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10465-z

Navigation