Skip to main content
Log in

Temperature-dependent electrical properties of schottky barrier diodes based on carbon nanotube arrays

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the current conduction mechanisms (CCMs) of the carbon nanotube Schottky barrier diodes (CNT SBDs) based on carbon nanotube arrays on an insulating quartz substrate are investigated using the forward current-voltage-temperature (I-V-T) measurements over a wide temperature range of 60 to 360 K. Anomalous temperature dependence of both the values of ideality factors (n) and Schottky barrier heights (SBHs) extracted from thermionic emission (TE) theory and Chueng’s method were observed, as the SBHs increase whereas the ideality factors decrease with the increasing temperature from 60 to 360 K. The anomalous temperature dependence could be explained by the Gaussian distribution of the Schottky barrier heights. Furthermore, the contributions of generation-recombination, tunneling, and leakage current are all considered for the forward current of the CNT SBDs. The fitting results indicate that in the temperature range of 60 to 360 K, the main CCMs below 180 K are tunneling and leakage, while the main CCMs are dominated by TE and leakage above 300 K. In this work, the dependence of the electrical properties of CNT SBDs on temperature is reported in detail, which is helpful to better understand the electrical properties of CNT SBDs and improve their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Y. Zhang, C.K. Wu, X.Y. Liu, L. Wang, C.Y. Dai, J.H. Cui, Y.K. Li, N. Kinar Remote Sens. 14, 2486 (2022)

    Article  Google Scholar 

  2. Y.H. Kim, J.H. Shin, D.W. Park, I.M. Lee, K.M. Park, Electron. Lett. 59, 12724 (2023)

    Article  Google Scholar 

  3. B. Zatko, L. Hrubcin, A. Sagatova, J. Sagatova, J. Osvald, P. Bohacek, E. Kovacova, Y. Halahovets, S.V. Rozov, V.G. Sandukvoskij, Appl. Surf. Sci. 536, 147801 (2020)

    Article  Google Scholar 

  4. H. Ayed, L. Bechir, M. Benabdesslem, N. Benslim, L. Mahdjoubi, T. Mohammed-Brahim, A. Hafdallah, M.S. Aida, J. Nano- Electron Phys. 8, 01038 (2016)

    Article  Google Scholar 

  5. C. Viegas, J. Powell, H.R. Liu, H. Sanghera, L. Donoghue, P.G. Huggard, B. Alderman, IEEE Microwave Wirel. Compon. Lett. 31, 188–191 (2021)

    Article  Google Scholar 

  6. X.Y. Liu, Y. Zhang, H.R. Wang, C.K. Wu, H.M. Wei, Y.H. Xu, J.T. Zhou, Z. Jin, B. Yan, Infrared Phys. Technol. 123, 104173 (2022)

    Article  CAS  Google Scholar 

  7. Y. Lin, S. Liang, L. Xu, L. Liu, Q. Hu, C. Fan, Y. Liu, J. Han, Z. Zhang, L.M. Peng, Adv. Funct. Mater. 32, 2104539 (2022)

    Article  CAS  Google Scholar 

  8. K. Schnittker, M. Tursunniyaz, J.B. Andrews, J. Inform. Disp. 22, 193–209 (2021)

    Article  Google Scholar 

  9. G. Fedorov, I. Gayduchenko, N. Titova, A. Gazaliev, M. Moskotin, M.N. Kaurova, B. Voronov, G. Goltsman, Phys. Status Solidi B 255, 1 (2018)

    Article  Google Scholar 

  10. J. Baek, T.G. Novak, H. Kim, J. Lee, B. Jang, J. Lee, S. Jeon, Nano Converg. 4, 35 (2017)

    Article  Google Scholar 

  11. H.W. Shi, L. Ding, D. Zhong, J. Han, L.L. Liu, P. Xu, H. Sun, J. Wang, L. Zhou, Z. Fang, L. Zhang, Nat. Electron. 4, 405–415 (2021)

    Article  CAS  Google Scholar 

  12. J. Si, D.L. Zhong, H.T. Xu, M.M. Xiao, C.X. Yu, Z.Y. Zhang, L.M. Peng, ACS Nano. 12, 627–634 (2018)

    Article  CAS  Google Scholar 

  13. Y.C. Che, Y.C. Lin, P. Kim, C.W. Zhou, ACS. Nano. 7, 4343–4350 (2013)

    Article  CAS  Google Scholar 

  14. X. Xie, M.A. Wahab, Y.H. Li, A.E. Islam, B. Tomic, J.Y. Huang, B. Burns, E. Seabron, S.N. Dunham, F. Du, J. Lin, W.L. Wilson, J.Z. Song, Y.G. Huang, M.A. Alam, J.A. Rogers, Appl. Phys. 117, 134303 (2015)

    Article  Google Scholar 

  15. Y. Lee, H. Jung, B. Choi, J. Yoon, H.B. Yoo, H.J. Kim, G.H. Park, D.M. Kim, D.H. Kim, M.H. Kang, S.J. Choi, RSC Adv. 9, 22124–22128 (2019)

    Article  CAS  Google Scholar 

  16. S. Qiu, K.J. Wu, B. Gao, L.Q. Li, H.H. Jin, Q.W. Li, Adv. Mater. 31, 1800750 (2019)

    Article  Google Scholar 

  17. C. Rutherglen, A. Al, P.F. Kane, T.A. Marsh, B.I. Cain, M.R. Hassan, C.W. AlShareef, K. Zhou, Galatsis, Nat. Nat. Electron 2, 530–539 (2019)

    Article  CAS  Google Scholar 

  18. C.C. Liu, Y. Cao, B. Wang, Z.X. Zhang, Y.X. Lin, L. Xu, Y.J. Yang, C.H. Jin, L.M. Peng, Z.Y. Zhang, Acs Nano. 16, 21482–21490 (2022)

    Article  CAS  Google Scholar 

  19. L.J. Liu, J. Han, L. Xu, J.S. Zhou, C.Y. Zhao, S.J. Ding, H.W. Shi, M.M. Xiao, L. Ding, Z. Ma, C.H. Jin, Z.Y. Zhang, L.M. Peng, Science 368, 850–850+ (2020)

    Article  CAS  Google Scholar 

  20. H.M. Manohara, E.W. Wong, E. Schlecht, B.D. Hunt, P.H. Siegel, Nano. Lett. 5, 1469–1474 (2005)

    Article  CAS  Google Scholar 

  21. N. Kumar, P. Kumar, N.K. Navani, S.K. Manhas, J. Electron Mater. 51, 207–213 (2022)

    Article  CAS  Google Scholar 

  22. A. Hajibadali, M. Baghaei Nejad, G. Farzi, Braz. J. Phys. 45, 394–398 (2015)

    Article  CAS  Google Scholar 

  23. H. Patel, K. Patel, A. Patel, H. Jagani, K.D. Patel, G.K. Solanki, V.M. Pathak, J. Electron Mater. 50, 5214–5225 (2021)

    Article  Google Scholar 

  24. M.A. Laurent, G. Gupta, D.J. Suntrup, S.P. DenBaars, U.K. Mishra, J. Appl. Phys. 119, 064501 (2016)

    Article  Google Scholar 

  25. S. Ozden, N. Avci, O. Pakma, I.A. Kariper, J. Inorg. Organomet. Polym Mater. 32, 1810 (2022)

    Article  CAS  Google Scholar 

  26. T.G. Kim, U.J. Kim, S.Y. Lee, Y.H. Lee, Y.S. Yu, S.W. Hwang, S. Kim, IEEE Trans. Electron. Devices 61, 2203 (2014)

    Article  CAS  Google Scholar 

  27. M. Labed, J.H. Park, A. Meftah, N. Sengouga, J.Y. Hong, Y.-K. Jung, Y.S. Rim, ACS Appl. Electron Mater. 3, 3667 (2021)

    Article  CAS  Google Scholar 

  28. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)

    Article  CAS  Google Scholar 

  29. A. Ashery, A.E.H. Gaballah, E.M. Ahmed, Mater. Res. Expr. 9, 016301 (2022)

    Article  CAS  Google Scholar 

  30. H. Ertap, H. Kacus, S. Aydogan, M. Karabulut, Sens. Actuators A: Phys. 315, 112264 (2020)

    Article  CAS  Google Scholar 

  31. İ Taşçıoğlu, S.O. Tan, F. Yakuphanoğlu, Ş Altındal, J. Electron Mater. 47, 6059 (2018)

    Article  Google Scholar 

  32. J. Appenzeller, M. Radosavljevic, J. Knoch, P. Avouris, Phys. Rev. Lett. 92, 048301 (2004)

    Article  CAS  Google Scholar 

  33. S. Kone, H. Schneider, K. Isoird, F. Thion, J. Achard, R. Issaoui, S. Msolli, J. Alexis, Diam. Relat. Mater. 27, 23 (2012)

    Article  Google Scholar 

  34. Y. Li, Y.F. Li, J.H. Zhang, X.Y. Zou, J. Semiconduct. 40, 1674 (2019)

    Google Scholar 

  35. J.H. Werner, H.H. Güttler, J. Appl. Phys. 69, 1522 (1991)

    Article  CAS  Google Scholar 

  36. Ç. Bilkan, Y. Badali, S.F. Shablou, Y.A. Kalandaragh, Ş Altındal, Appl. Phys. A. 123, 560 (2017)

    Article  Google Scholar 

  37. İ Taşçıoğlu, U. Aydemir, Ş Altındal, J. Appl. Phys. 108, 064506 (2010)

    Article  Google Scholar 

  38. A.Y.C. Yu, E.H. Snow, J. Appl. Phys. 39, 3008–3008 (1968)

    Article  CAS  Google Scholar 

  39. Q. Zhang, J.-S. Nam, J.Y. Han, S. Datta, N. Wei, E.X. Ding, A. Hussain, S. Ahmad, V. Skakalova, A.T. Khan, Y.P. Liao, M. Tavakkoli, B. Peng, K. Mustonen, D. Kim, I. Chung, S. Maruyama, H. Jiang, I. Jeon, E.I. Kauppinen, Adv. Funct. Mater 32, 2103397 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Research and Development Projects in Key Fields of Guangdong Province under Grant No. 2020B010171001, as well as the Opening Project of Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences.

Funding

The Research and Development Projects in Key Fields of Guangdong Province, 2020B010171001, Hudong Chang, the Opening Project of Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, E2YS024001, Hudong Chang

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Device preparation, data collection and analysis were performed by Zhi Huang, Zhen Zhang, Hudong Chang, and Yakuan Chang. The first draft of the manuscript was written by Zhi Huang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bing Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Zhang, Z., Chang, H. et al. Temperature-dependent electrical properties of schottky barrier diodes based on carbon nanotube arrays. J Mater Sci: Mater Electron 34, 1046 (2023). https://doi.org/10.1007/s10854-023-10447-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10447-1

Navigation