Skip to main content
Log in

Self-passivated carbon dots derived from Bougainvillea spectabilis for photovoltaic application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Carbon dots (CD) derived from chemical sources require an additional input of passivation agent, which is not a requirement for the ones synthesized from natural sources. The CD show bright luminescence, predominantly in the blue region which are applicable in a wide range of applications. In the current work we have used the flowers of Bougainvillea spectabilis for synthesizing CD via solvothermal route. The derived CD displayed both excitation dependent and independent emission with a strong turquoise color. The dynamic light scattering measurement revealed a mean size of 10.30 nm while the transmission electron microscopy showed an average size of 9.81 nm. The quantum dot sensitized solar cell prepared using the CD showed a Voc of 0.62 V and a Jsc of 0.45 mA cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126(40), 12736–12737 (2004)

    Article  CAS  Google Scholar 

  2. M.J. Molaei, The optical properties and solar energy conversion applications of carbon quantum dots: a review. Sol. Energy 196, 549–566 (2020)

    Article  CAS  Google Scholar 

  3. B. Thangaraj, P.R. Solomon, S. Ranganathan, Synthesis of carbon quantum dots with special reference to biomass as a source: a review. Curr. Pharm. Design 25(13), 1455–1476 (2019)

    Article  CAS  Google Scholar 

  4. S.S. Shankar, V. Ramachandran, R.P. Raj, T.V. Sruthi, V.B. Kumar, Carbon quantum dots: a potential candidate for diagnostic and therapeutic application, in Nanobiomaterial Engineering . (Springer, Berlin, 2020), pp.49–70

    Chapter  Google Scholar 

  5. R. Wang, K.Q. Lu, Z.R. Tang, Y.J. Xu, Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J. Mater. Chem. A 5(8), 3717–3734 (2017)

    Article  CAS  Google Scholar 

  6. X. Wang, Y. Feng, P. Dong, J. Huang, A mini review on carbon quantum dots: preparation, properties, and electrocatalytic application. Front. Chem. 7, 671 (2019)

    Article  CAS  Google Scholar 

  7. K. Surana, B. Bhattacharya, Fluorescence quenching by förster resonance energy transfer in carbon–cadmium sulfide core-shell quantum dots. ACS Omega 6(48), 32749–32753 (2021)

    Article  CAS  Google Scholar 

  8. S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications. Chem. Soc. Rev. 44(1), 362–381 (2015)

    Article  CAS  Google Scholar 

  9. P. Devi, S. Saini, K.H. Kim, The advanced role of carbon quantum dots in nanomedical applications. Biosens. Bioelectron. 141, 111158 (2019)

    Article  CAS  Google Scholar 

  10. M.J. Molaei, Principles, mechanisms, and application of carbon quantum dots in sensors: a review. Anal. Methods 12(10), 1266–1287 (2020)

    Article  CAS  Google Scholar 

  11. A. Dager, T. Uchida, T. Maekawa, M. Tachibana, Synthesis and characterization of mono-disperse carbon quantum dots from fennel seeds: photoluminescence analysis using machine learning. Sci. Rep. 9(1), 1–12 (2019)

    Article  CAS  Google Scholar 

  12. K. Raji, V. Ramanan, P. Ramamurthy, Facile and green synthesis of highly fluorescent nitrogen-doped carbon dots from jackfruit seeds and its applications towards the fluorimetric detection of au 3+ ions in aqueous medium and in in vitro multicolor cell imaging. New J. Chem. 43(29), 11710–11719 (2019)

    Article  CAS  Google Scholar 

  13. V. Sharma, S.K. Singh, S.M. Mobin, Bioinspired carbon dots: from rose petals to tunable emissive nanodots. Nanoscale Adv. 1(4), 1290–1296 (2019)

    Article  CAS  Google Scholar 

  14. B. De, N. Karak, A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Adv. 3(22), 8286–8290 (2013)

    Article  CAS  Google Scholar 

  15. L. Liu, X. Yu, Z. Yi, F. Chi, H. Wang, Y. Yuan, D. Li, K. Xu, X. Zhang, High efficiency solar cells tailored using biomass-converted graded carbon quantum dots. Nanoscale 11(32), 15083–15090 (2019)

    Article  CAS  Google Scholar 

  16. A.M. Alam, B.Y. Park, Z.K. Ghouri, M. Park, H.Y. Kim, Synthesis of carbon quantum dots from cabbage with down-and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications. Green Chem. 17(7), 3791–3797 (2015)

    Article  CAS  Google Scholar 

  17. S. Sahu, B. Behera, T.K. Maiti, S. Mohapatra, Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem. Commun. 48(70), 8835–8837 (2012)

    Article  CAS  Google Scholar 

  18. R. Das, R. Bandyopadhyay, P. Pramanik, Carbon quantum dots from natural resource: a review. Mater. Today Chem. 8, 96–109 (2018)

    Article  CAS  Google Scholar 

  19. R. Aranda, G. Catian, P.A. Bogiani, I. Inforzato, Effect of nectar pillaging by native stingless bees (Hymenoptera: Apidae) in the abscission of flowers of Bougainvillea spectabilis Willd.(Nyctaginaceae). Acta Sci. Biol. Sci. 33(4), 399–405 (2011)

    Article  Google Scholar 

  20. R. Aasia, S.A. Azad, F. Umar, Community analysis of plant parasitic nematodes associated with ornamental plants in Rajouri district (J&K), India. Int. J. Curr. Microbiol. Appl. Sci. 3(1), 194–197 (2014)

    Google Scholar 

  21. D.J. Godibo, S.T. Anshebo, T.Y. Anshebo, Dye sensitized solar cells using natural pigments from five plants and quasi-solid state electrolyte. J. Braz. Chem. Soc. 26, 92–101 (2015)

    CAS  Google Scholar 

  22. N. Yazie, D. Worku, A. Reda, Natural dye as light-harvesting pigments for quasi-solid-state dye-sensitized solar cells. Mater. Renew. Sustain. Energy 5(3), 1–7 (2016)

    Article  Google Scholar 

  23. M. Narayan, A. Raturi, Investigation of some common fijian flower dyes as photosensi-tizers for dye sensitized solar cellsabstract. Appl. Solar Energy 47(2), 112–117 (2011)

    Article  Google Scholar 

  24. D. Eli, G.P. Musa, D. Ezra, Chlorophyll and betalain as light-harvesting pigments for nanostructured TiO2 based dye-sensitized solar cells. J. Energy Nat. Resour. 5(5), 53–58 (2016)

    Article  Google Scholar 

  25. A.Y. Madkhli, W. Shirbeeny, The effect of cobalt ions doping on the optical properties of ZnS quantum dots according to photoluminescence intensity and crystalline structure. Phys. B: Condens. Matter. 597, 412414 (2020)

    Article  CAS  Google Scholar 

  26. Y.P. Sun, B. Zhou, Y. Lin, W. Wang, K.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, P.G. Luo, Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128(24), 7756–7757 (2006)

    Article  CAS  Google Scholar 

  27. Z.H. Wen, X.B. Yin, Excitation-independent carbon dots, from photoluminescence mechanism to single-color application. RSC Adv. 6(33), 27829–27835 (2016)

    Article  CAS  Google Scholar 

  28. J. Yang, Q. Tang, Q. Meng, Z. Zhang, J. Li, B. He, P. Yang, Photoelectric conversion beyond sunny days: all-weather carbon quantum dot solar cells. J. Mater. Chem. A 5(5), 2143–2150 (2017)

    Article  CAS  Google Scholar 

  29. Y. Meng, Y. Zhang, W. Sun, M. Wang, B. He, H. Chen, Q. Tang, Biomass converted carbon quantum dots for all-weather solar cells. Electrochim. Acta 257, 259–266 (2017)

    Article  CAS  Google Scholar 

  30. J. Briscoe, A. Marinovic, M. Sevilla, S. Dunn, M. Titirici, Biomass-derived carbon quantum dot sensitizers for solid‐state nanostructured solar cells. Angew. Chem. Int. Ed. 54(15), 4463–4468 (2015)

    Article  CAS  Google Scholar 

  31. P. Mirtchev, E.J. Henderson, N. Soheilnia, C.M. Yip, G.A. Ozin, Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO2 solar cells. J. Mater. Chem. 22(4), 1265–1269 (2012)

    Article  CAS  Google Scholar 

  32. Q. Zhang, G. Zhang, X. Sun, K. Yin, H. Li, Improving the power conversion efficiency of carbon quantum dot-sensitized solar cells by growing the dots on a TiO2 photoanode in situ. Nanomaterials 7(6), 130 (2017)

    Article  Google Scholar 

  33. B. Cui, L. Yan, H. Gu, Y. Yang, X. Liu, C.Q. Ma, Y. Chen, H. Jia, Fluorescent carbon quantum dots synthesized by chemical vapor deposition: an alternative candidate for electron acceptor in polymer solar cells. Opt. Mater. 75, 166–173 (2018)

    Article  CAS  Google Scholar 

  34. T. Majumder, S.P. Mondal, Graphene quantum dots as a green photosensitizer with carbon-doped ZnO nanorods for quantum-dot-sensitized solar cell applications. Bull. Mater. Sci. 42, 1–5 (2019)

    Article  Google Scholar 

  35. K. Surana, R.M. Mehra, S.S. Soni, B. Bhattacharya, Real-time photovoltaic parameters assessment of carbon quantum dots showing strong blue emission. RSC Adv. 12(3), 1352–1360 (2022)

    Article  CAS  Google Scholar 

  36. V. Gupta, N. Chaudhary, R. Srivastava, G.D. Sharma, R. Bhardwaj, S. Chand, Luminscent graphene quantum dots for organic photovoltaic devices. J. Am. Chem. Soc. 133(26), 9960–9963 (2011)

    Article  CAS  Google Scholar 

  37. B. Mistry, H.K. Machhi, R.S. Vithalani, D.S. Patel, C.K. Modi, M. Prajapati, K.R. Surati, S.S. Soni, P.K. Jha, S.R. Kane, Harnessing the N-dopant ratio in carbon quantum dots for enhancing the power conversion efficiency of solar cells. Sustain. Energy Fuels 3(11), 3182–3190 (2019)

    Article  CAS  Google Scholar 

  38. X. Guo, H. Zhang, H. Sun, M.O. Tade, S. Wang, Green synthesis of carbon quantum dots for sensitized solar cells. ChemPhotoChem 1(4), 116–119 (2017)

    Article  CAS  Google Scholar 

  39. B. Yan, X. Liu, W. Lu, M. Feng, H.J. Yan, Z. Li, S. Liu, C. Wang, J.S. Hu, D.J. Xue, Indoor photovoltaics awaken the world’s first solar cells. Sci. Adv. 8(49), 9923 (2022)

    Article  Google Scholar 

  40. B. Hou, B.S. Kim, H.K.H. Lee, Y. Cho, P. Giraud, M. Liu, J. Zhang, M.L. Davies, J.R. Durrant, W.C. Tsoi, Z. Li, Multiphoton absorption stimulated metal chalcogenide quantum dot solar cells under ambient and concentrated irradiance. Adv. Funct. Mater. 30(39), 2004563 (2020)

    Article  CAS  Google Scholar 

  41. A. Bora, K. Mohan, S.K. Dolui, Carbon dots as cosensitizers in dye-sensitized solar cells and fluorescence chemosensors for 2, 4, 6-trinitrophenol detection. Ind. Eng. Chem. Res. 58(51), 22771–22778 (2019)

    Article  CAS  Google Scholar 

  42. M.T. Efa, T. Imae, Effects of carbon dots on ZnO nanoparticle-based dye-sensitized solar cells. Electrochim. Acta 303, 204–210 (2019)

    Article  CAS  Google Scholar 

  43. H.F. Etefa, T. Imae, M. Yanagida, Enhanced photosensitization by carbon dots co-adsorbing with dye on p-type semiconductor (Nickel Oxide) solar cells. ACS Appl. mater. interfaces 12(16), 18596–18608 (2020)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AYM, GS, and SK. The first draft of the manuscript was written by AYM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sunanda Kakroo.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madkhli, A.Y., Souadi, G. & Kakroo, S. Self-passivated carbon dots derived from Bougainvillea spectabilis for photovoltaic application. J Mater Sci: Mater Electron 34, 914 (2023). https://doi.org/10.1007/s10854-023-10366-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10366-1

Navigation