Skip to main content
Log in

Exploring the Potential of Allamanda cathartica-derived Carbon Dots for Enhancing Dye-sensitized Solar Cell Performance

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Carbon dots (CD) produced through chemical sources need a passivation agent, unlike those created from natural sources. These CD have a vivid luminescence, mainly in the blue spectrum, which can be used in various fields of science and engineering. In this study, we have utilized the widely available Allamanda cathartica flowers to produce CD through solvothermal process. The resulting CD exhibited excellent optical properties with a fluorescence lifetime of 4.71 ns and an average particle size of 3.23 nm. The CD were utilized as co-sensitizers in a dye-sensitized solar cell with N719 dye which showed four times more efficiency than the only CD-sensitized device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, and W.A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126(40), 12736 (2004).

    Article  CAS  Google Scholar 

  2. K.S. Fernando, S. Sahu, Y. Liu, W.K. Lewis, E.A. Guliants, A. Jafariyan, P. Wang, C.E. Bunker, and Y.P. Sun, Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl. Mater. Interfaces 7(16), 8363 (2015).

    Article  CAS  Google Scholar 

  3. D.S. Su and G. Centi, A perspective on carbon materials for future energy application. J. Energy Chem. 22(2), 151 (2013).

    Article  CAS  Google Scholar 

  4. P. Tian, L. Tang, K.S. Teng, and S.P. Lau, Graphene quantum dots from chemistry to applications. Mater. Today Chem. 10, 221 (2018).

    Article  CAS  Google Scholar 

  5. Y. Yan, J. Gong, J. Chen, Z. Zeng, W. Huang, K. Pu, J. Liu, and P. Chen, Recent advances on graphene quantum dots: from chemistry and physics to applications. Adv. Mater. 31(21), 1808283 (2019).

    Article  Google Scholar 

  6. K. Surana and B. Bhattacharya, Fluorescence quenching by förster resonance energy transfer in carbon-cadmium sulfide core-shell quantum dots. ACS Omega 6(48), 32749 (2021).

    Article  CAS  Google Scholar 

  7. P. Kalra, K. Surana, B. Bhattacharya, G. Singh, and G. Durga, Synergistic behaviour of silatrane functionalized perylene diimide dye and carbon quantum dots for enhancing photovoltaic performance. J. Mol. Struct. 1285, 135470 (2023).

    Article  CAS  Google Scholar 

  8. Z. Kang and S.T. Lee, Carbon dots: advances in nanocarbon applications. Nanoscale 11(41), 19214 (2019).

    Article  CAS  Google Scholar 

  9. X.T. Zheng, A. Ananthanarayanan, K.Q. Luo, and P. Chen, Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11(14), 1620 (2015).

    Article  CAS  Google Scholar 

  10. Y.P. Sun, B. Zhou, Y. Lin, W. Wang, K.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, and P.G. Luo, Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128(24), 7756 (2006).

    Article  CAS  Google Scholar 

  11. S. Li, L. Li, H. Tu, H. Zhang, D.S. Silvester, C.E. Banks, G. Zou, H. Hou, and X. Ji, The development of carbon dots: from the perspective of materials chemistry. Mater. Today 51, 188 (2021).

    Article  CAS  Google Scholar 

  12. K. Surana, R.M. Mehra, S.S. Soni, and B. Bhattacharya, Real-time photovoltaic parameters assessment of carbon quantum dots showing strong blue emission. RSC Adv. 12(3), 1352 (2022).

    Article  CAS  Google Scholar 

  13. S. Sagbas and N. Sahiner, Carbon dots: preparation, properties, and application, Nanocarbon and its Composites. (Woodhead Publishing, 2019), pp. 651–676.

    Chapter  Google Scholar 

  14. M. Tuerhong, X. Yang, and Y.I.N. Xue-Bo, Review on carbon dots and their applications. Chinese J. Anal. Chem. 45(1), 139 (2017).

    Article  Google Scholar 

  15. Y. Zhou, K.J. Mintz, S.K. Sharma, and R.M. Leblanc, Carbon dots: diverse preparation, application, and perspective in surface chemistry. Langmuir 35(28), 9115 (2019).

    Article  CAS  Google Scholar 

  16. C. Long, Z. Jiang, J. Shangguan, T. Qing, P. Zhang, and B. Feng, Applications of carbon dots in environmental pollution control: a review. Chem. Eng. J. 406, 126848 (2021).

    Article  CAS  Google Scholar 

  17. K.O. Boakye-Yiadom, S. Kesse, Y. Opoku-Damoah, M.S. Filli, M. Aquib, M.M.B. Joelle, M.A. Farooq, R. Mavlyanova, F. Raza, R. Bavi, and B. Wang, Carbon dots: applications in bioimaging and theranostics. Int. J. Pharm. 564, 308 (2019).

    Article  CAS  Google Scholar 

  18. X. Zhang, M. Jiang, N. Niu, Z. Chen, S. Li, S. Liu, and J. Li, Natural-product-derived carbon dots: from natural products to functional materials. Chemsuschem 11(1), 11 (2018).

    Article  Google Scholar 

  19. A.Y. Madkhli, G. Souadi, and S. Kakroo, Self-passivated carbon dots derived from Bougainvillea spectabilis for photovoltaic application. J. Mater. Sci. Mater. Electron. 34(10), 914 (2023).

    Article  CAS  Google Scholar 

  20. V.L. Petricevich and R. Abarca-Vargas, Allamanda cathartica: a review of the phytochemistry, pharmacology, toxicology, and biotechnology. Molecules 24(7), 1238 (2019).

    Article  Google Scholar 

  21. M. Narayan and A. Raturi, Investigation of some common Fijian flower dyes as photosensitizers for dye-sensitized solar cells. Appl. Sol. Energy 47, 112 (2011).

    Article  Google Scholar 

  22. T. Raguram and K.S. Rajni, Characterization of TiO2 photoanodes and natural dyes (Allamanda Blanchetti and Allamanda Cathartica) extract as sensitizers for dye-sensitized solar cell applications. J. Sol-Gel Sci. Technol. 93, 202 (2020).

    Article  CAS  Google Scholar 

  23. T.N. Tiwari, V.B. Pandey, and N.K. Dubey, Plumieride from allamanda cathartica as an antidermatophytic agent. Phytother. Res. 16(4), 393 (2002).

    Article  CAS  Google Scholar 

  24. N.T.R.N. Kumara, P. Ekanayake, A. Lim, L.Y.C. Liew, M. Iskandar, L.C. Ming, and G.K.R. Senadeera, Layered co-sensitization for enhancement of conversion efficiency of natural dye sensitized solar cells. J. Alloys Compd. 581, 186 (2013).

    Article  CAS  Google Scholar 

  25. K.S. Keremane, I.M. Abdellah, P. Naik, A. El-Shafei, and A.V. Adhikari, Simple thiophene-bridged D–π–A type chromophores for DSSCs: a comprehensive study of their sensitization and co-sensitization properties. Phys. Chem. Chem. Phys. 22(40), 23169 (2020).

    Article  CAS  Google Scholar 

  26. L. Sang, L. Lei, J. Lin, and H. Ge, Co-sensitization of TiO2 electrode with Eosin Y dye and carbon dots for photoelectrochemical water splitting: the enhanced dye adsorption and the charge transfer route. Int. J. Hydrogen Energy 42(50), 29686 (2017).

    Article  CAS  Google Scholar 

  27. X. Wang, L. Cao, F. Lu, M.J. Meziani, H. Li, G. Qi, B. Zhou, B.A. Harruff, F. Kermarrec, and Y.P. Sun, Photoinduced electron transfers with carbon dots. Chem. Commun. 25, 3774 (2009).

    Article  Google Scholar 

  28. X. Dong, L. Wei, Y. Su, Z. Li, H. Geng, C. Yang, and Y. Zhang, Efficient long lifetime room temperature phosphorescence of carbon dots in a potash alum matrix. J. Mater. Chem. C 3(12), 2798 (2015).

    Article  CAS  Google Scholar 

  29. W. Zhu, J. Duan, Y. Duan, Y. Zhao, and Q. Tang, Efficiency enhancement of hybridized solar cells through co-sensitization and fast charge extraction by up-converted polyethylene glycol modified carbon quantum dots. J. Power. Sources 367, 158 (2017).

    Article  CAS  Google Scholar 

  30. J.C. Chou, R.H. Syu, P.H. Yang, P.Y. Kuo, Y.H. Nien, C.H. Lai, P.F. Chen, Y.T. Wu, and S.W. Zhuang, Graphene quantum dots as a co-sensitizer with improving light absorption for dye-sensitized solar cells. IEEE Trans. Nanotechnol. 22, 20 (2023).

    Article  CAS  Google Scholar 

  31. W. Ghann, V. Sharma, H. Kang, F. Karim, B. Richards, S.M. Mobin, J. Uddin, M.M. Rahman, F. Hossain, H. Kabir, and N. Uddin, The synthesis and characterization of carbon dots and their application in dye sensitized solar cell. Int. J. Hydrogen Energy 44(29), 14580 (2019).

    Article  CAS  Google Scholar 

  32. A. Bora, K. Mohan, and S.K. Dolui, Carbon dots as cosensitizers in dye-sensitized solar cells and fluorescence chemosensors for 2,4,6-trinitrophenol detection. Ind. Eng. Chem. Res. 58(51), 22771 (2019).

    Article  CAS  Google Scholar 

  33. M.T. Efa and T. Imae, Effects of carbon dots on ZnO nanoparticle-based dyesensitized solar cells. Electrochim. Acta 303, 204 (2019).

    Article  CAS  Google Scholar 

  34. H.F. Etefa, T. Imae, and M. Yanagida, Enhanced photosensitization by carbon dots co-adsorbing with dye on p-type semiconductor (nickel oxide) solar cells. ACS Appl. Mater. Interfaces 12(16), 18596 (2020).

    Article  CAS  Google Scholar 

  35. H. Zou, D. Guo, B. He, J. Yu, and K. Fan, Enhanced photocurrent density of HTM-free perovskite solar cells by carbon quantum dots. Appl. Surf. Sci. 430, 625 (2018).

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AYM, GS, and SK. The first draft of the manuscript was written by AYM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sunanda Kakroo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madkhli, A.Y., Souadi, G. & Kakroo, S. Exploring the Potential of Allamanda cathartica-derived Carbon Dots for Enhancing Dye-sensitized Solar Cell Performance. J. Electron. Mater. 53, 1067–1073 (2024). https://doi.org/10.1007/s11664-023-10807-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10807-x

Keywords

Navigation