Skip to main content

Advertisement

Log in

Incorporation of Carbon Dots on the ZnO Nanosheets as Metal–Organic Framework Photoanodes for High Efficient Dye Sensitized Solar Cell Applications

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this report, fabrication of carbon dots (CDs) incorporated zinc oxide (ZnO) nanosheets were synthesized by a facile hydrothermal route. The morphology and particles sizes of the ZnO are significantly improved by CDs, which is investigated using XRD, SEM and TEM studies. TEM studies further illustrate that CDs dots with individual spherical shaped with sizes in the ranges 10–15 nm, which is uniformly coated on the surface of the ZnO nanosheets. The textural properties of the CDs/ZnO are dramatically improved due to their high surface area (93.5 m2/g) and porous nature (22.54 nm), which is higher than bare ZnO (43.5 m2/g and 47.31 nm). The assembled device (sandwich type) consists of photoanode (CDs/ZnO), counter electrode (Pt) and iodide/triiodide (I/I3). Sun stimulator (AM 1.5G, 100 mW/cm2) used as source of light to evaluate the photovoltaic characteristics. Owing to the huge surface area and porous nature of the CDs/ZnO photoanode show outstanding power conversion efficiency of 7.85%, this is 3.2 times better than bare ZnO photoanode (2.45%). The fabulous behavior is due to the reducing the charge recombination process at the electrode interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Qi, K. Zhao, G. Li, Y. Gao, H. Zhao, R. Yu, and Z. Tang (2014). Nanoscale. 6, 4072.

    Article  CAS  Google Scholar 

  2. Q. Zhang, E. Uchaker, S. L. Candelaria, and G. Cao (2013). Chem. Soc. Rev. 42, 3127.

    Article  CAS  Google Scholar 

  3. N. Q. Wu, J. Wang, D. Tafen, H. Wang, J.-G. Zheng, J. P. Lewis, X. Liu, and S. S. Leonard (2010). J. Am. Chem. Soc. 132, 6679.

    Article  CAS  Google Scholar 

  4. J. Tian, Y. Sang, G. Yu, H. Jiang, X. Mu, and H. Liu (2013). Adv. Mater. 25, 5075.

    Article  CAS  Google Scholar 

  5. J.-L. Lan, Z. Liang, Y.-H. Yang, F. S. Ohuchi, S. A. Jenekhe, and G. Cao (2014). Nano Energy 4, 140.

    Article  CAS  Google Scholar 

  6. L. Wang and T. Sasaki (2014). Chem. Rev. 114, 9455.

    Article  CAS  Google Scholar 

  7. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Graetzel (1993). J. Am. Chem. Soc. 8, 6382.

    Article  Google Scholar 

  8. A. Hagfeldt and M. Grätzel (2000). Acc. Chem. Res. 8, 269.

    Article  CAS  Google Scholar 

  9. M. Grätzel (2001). Nature. 8, 338.

    Article  Google Scholar 

  10. J. Lim, M. Lee, S. K. Balasingam, J. Kim, D. Kim, and Y. Jun (2013). RSC Adv. 8, 4801.

    Article  CAS  Google Scholar 

  11. F. H. Ali and D. B. Alwan (2018). IOP Conf. Ser. J. Phys. Conf. Ser. 1003, 012077.

    Article  CAS  Google Scholar 

  12. S. Kumar, S. Pradhan, and A. Dhar (2016). Procedia Eng. 141, 1.

    Article  CAS  Google Scholar 

  13. F. Wang, Y. Zhang, M. Yang, J. Du, L. Yang, L. Fan, Y. Sui, X. Liu, and J. Yang (2019). J. Power Sources. 440, 227157.

    Article  CAS  Google Scholar 

  14. V. D. Dao, L. L. Larina, J. K. Lee, K. D. Jung, B. T. Huye, and H. S. Choi (2015). Carbon. 81, 710.

    Article  CAS  Google Scholar 

  15. X. Guo, W. Di, C. Chen, X. Wang, and W. Qin (2014). Dalton Trans. 43, 1048.

    Article  CAS  Google Scholar 

  16. S. U. Khan, M. Al-Shahry, and W. B. Ingler (2002). Science. 297, 2243.

    Article  CAS  Google Scholar 

  17. J. Tian, Z. Zhao, A. Kumar, R. I. Boughton, and H. Liu (2014). Chem. Soc. Rev. 43, 6920.

    Article  CAS  Google Scholar 

  18. B. Seger, J. McCray, A. Mukherji, X. Zong, Z. Xing, and L. Wang (2013). Angew. Chem. Int. Ed. 52, 6400.

    Article  CAS  Google Scholar 

  19. X. Wang, Z. Li, J. Shi, and Y. Yu (2014). Chem. Rev. 114, 9346.

    Article  CAS  Google Scholar 

  20. X. Han, Y. Han, H. Huang, H. Zhang, X. Zhang, R. Liu, Y. Liu, and Z. Kang (2013). Dalton Trans. 42, 10380.

    Article  CAS  Google Scholar 

  21. K. Li, F. Y. Su, and W. D. Zhang (2016). Appl. Surf. Sci. 375, 110.

    Article  CAS  Google Scholar 

  22. S. Qu, X. Wang, Q. Lu, X. Liu, and L. Wang (2012). Angew. Chem. 124, 12381.

    Article  Google Scholar 

  23. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, and K. Thavamani (2014). J. Mater. Sci. Mater. Electron. 25, 730.

    Article  CAS  Google Scholar 

  24. L. A. A. Rodríguez, M. Pianassola, and D. Nagle Travess (2017). Mater. Res. 20, 96.

    Article  Google Scholar 

  25. M. Parthibavarman, M. Karthik, and S. Prabhakaran (2018). Vacuum. 155, 224.

    Article  CAS  Google Scholar 

  26. M. Parthibavarman, S. Sathishkumar, M. Jayashree, and R. BoopathiRaja (2019). J. Clust. Sci. 30, 351.

    Article  CAS  Google Scholar 

  27. M. Parthibavarman, S. Sathishkumar, S. Prabhakaran, M. Jayashree, and R. BoopathiRaja (2018). J. Iran. Chem. Soc. 15, 2789.

    Article  CAS  Google Scholar 

  28. M. Parthibavarman, M. Karthik, P. Sathishkumar, and R. Poonguzhali (2018). J. Iran. Chem. Soc. 15, 1419.

    Article  CAS  Google Scholar 

  29. Satbir Singh, Amarpal Singh, Navneet Kaur, J. Mater. 2016, Article ID 9081346 (2016)

  30. A. G. Milekhin, N. A. Yeryukov, L. L. Sveshnikova, T. A. Duda, E. I. Zenkevich, S. S. Kosolobov, et al. (2011). Exp. Theor. Phys. 113, 983.

    Article  CAS  Google Scholar 

  31. Z. Li, F. Gong, G. Zhou, and Z. S. Wang (2013). J. Phys. Chem. C. 117, 6561.

    Article  CAS  Google Scholar 

  32. M. Indhumathy and A. Prakasam (2019). J. Mater. Sci. Mater. Electron. 20, 15444.

    Article  CAS  Google Scholar 

  33. R. BoopathiRaja and M. Parthibavarman (2019). J. Alloy. Compd. 811, 152084.

    Article  CAS  Google Scholar 

  34. J. Liu, X. Li, and L. Dai (2006). Adv. Mater. 18, 1740.

    Article  CAS  Google Scholar 

  35. S. Anandana, A. Vinu, K. Lovely, N. Gokulakrishnan, P. Srinivasu, T. Mori, V. Murugesan, V. Sivamurugan, and K. Ariga (2007). J. Mol. Catal. A: Chem. 266, 149.

    Article  CAS  Google Scholar 

  36. Kindly provide complete details.

  37. J. Chen, C. Li, D. W. Zhao, W. Lei, Y. Zhang, M. T. Cole, D. P. Chu, B. P. Wang, Y. P. Cui, X. W. Sun, and W. I. Milne (2010). Electrochem. Commun. 12, 1432.

    Article  CAS  Google Scholar 

  38. R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther (2002). Electrochim. Acta 47, 4213.

    Article  CAS  Google Scholar 

  39. S. Yun, A. Hagfeldt, and T. Ma (2014). Adv. Mater. 26, 6210.

    Article  CAS  Google Scholar 

  40. T. Majumder, K. Debnath, S. Dhar, J. J. Hmar, and S. P. Mondal (2016). Energy Technol. 4, 950.

    Article  CAS  Google Scholar 

  41. K. Yoon, H. Ahn, M. Kwak, P. Thiyagarajan, and J. Jang (2015). Adv. Opt. Mat. 3, 907.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Prakasam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padmanathan, S., Prakasam, A. Incorporation of Carbon Dots on the ZnO Nanosheets as Metal–Organic Framework Photoanodes for High Efficient Dye Sensitized Solar Cell Applications. J Clust Sci 32, 795–804 (2021). https://doi.org/10.1007/s10876-020-01846-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01846-z

Keywords

Navigation